[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1771530.1771567guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Image statistics and local spatial conditions for nonstationary blurred image reconstruction

Published: 12 September 2007 Publication History

Abstract

Deblurring is important in many visual systems. This paper presents a novel approach for nonstationary blurred image reconstruction with ringing reduction in a variational Bayesian learning and regularization framework. Our approach makes effective use of the image statistical prior and image local spatial conditions through the whole learning scheme. A nature image statistics based marginal prior distribution is used not only for blur kernel estimation but also for image reconstruction. For an ill-posed blur estimation problem, variational Bayesian ensemble learning can achieve a tractable posterior using an image statistic prior which is translation and scale-invariant. During the deblurring, nonstationary blurry images have stronger ringing effects. We thus propose an iterative reweighted regularization function based on the use of an image statistical prior and image local spatial conditions for perceptual image deblurring.

References

[1]
Zheng, H., Hellwich, O.: Introducing dynamic prior knowledge to partially-blurred image restoration. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition. LNCS, vol. 4174, pp. 111-121. Springer, Heidelberg (2006).
[2]
Zheng, H., Hellwich, O.: Double regularized Bayesian estimation for blur identification in video sequences. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 943-952. Springer, Heidelberg (2006).
[3]
Molina, R., Katsaggelos, A., Mateos, J.: Bayesian and regularization methods for hyperparameters estimate in image restoration. IEEE Tr. on Sig. 8, 231-246 (1999).
[4]
Miskin, J., MacKay, D.J.C.: Ensemble Learning for Blind Image Separation and Deconvolution. In: Adv. in Independent Component Analysis, Springer, Heidelberg (2000).
[5]
Miskin, J.W.: Ensemble Learning for Independent Component Analysis. PhD thesis, Uni. Cambridge (2000).
[6]
Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. on PAMI 20, 699-716 (1998).
[7]
Hinton, G.E., Camp, D.v.: Keeping neural networks simple by minimizing the description length of the weights.s. In: ACM Conf. on Computational Learning Theory, pp. 5-13 (1993).
[8]
Attias, H.: A variational Bayesian framework for graphical models. In: Leen, T, et al. (eds.) Advances in NIPS, pp. 209-215 (2000).
[9]
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.: Removing camera shake from a single photograph. In: SIGGRAPH 2006, vol. 25, pp. 787-794 (2006).
[10]
Simoncelli, E.: Statistical models for images: Compression, restoration and synthesis. In: 31st Asilomar Conf. on Sig., Sys. and Computers (1997).
[11]
Lagendijk, R., Biemond, J., Boekee, D.: Regularized iterative image restoration with ringing reduction. IEEE Tr. on Ac., Sp., and Sig. Proc. 36, 1874-1888 (1988).
[12]
Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. IJCV 63, 5-19 (2005).
[13]
Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV 40, 49-72 (2000).
[14]
Field, D.J.: Relations between the statistics and natural images and the responses properties of cortical cells. J. Optical Soc. Am. A. 4, 2379-2394 (1987).
[15]
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607-609 (1996).
[16]
Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE on PAMI 11, 674-693 (1989).
[17]
Roth, S., Black, M.: Fields of experts: A framework for learning image priors. In: CVPR, San Diego, pp. 860-867 (2005).
[18]
Zhu, S., Wu, X., Mumford, D.: Minimax entropy principle and its to texture modeling. Neural Computation 9, 1627-1660 (1997).
[19]
Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. MIT Press, Cambridge, Massachusetts (2001).
[20]
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. PAMI 12, 629-639 (1990).
[21]
O'leary, D.P.: Robust regression computation using iteratively reweighted least squares. SIAM J. Matrix Anal. Appl. 11, 466-480 (1990).
[22]
Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. IJCV 70, 257-277 (2006).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Proceedings of the 29th DAGM conference on Pattern recognition
September 2007
559 pages
ISBN:9783540749332
  • Editors:
  • Fred A. Hamprecht,
  • Christoph Schnörr,
  • Bernd Jähne

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 September 2007

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 4
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media