[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1715350.1715618guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Image-based exploration obstacle avoidance for mobile robot

Published: 17 June 2009 Publication History

Abstract

Obstacle avoidance is a key component of autonomous systems. In particular, when dealing with large robots in unmodified environments, robust obstacle avoidance is vital. This paper presents a new image-based exploration algorithm for a mobile robot equipped only with a monocular pan-tilt camera to autonomously explore the natural scene structure in indoor environments. The algorithm inferred and computed the frontier information directly from the segmentation images and classified each super-pixel as belong either to an obstacle or the ground plane. The method used the distance and orientation information of the frontier to control the robot to avoid collisions. Experimental results on a mobile robot in an unmodified laboratory and corridor environments demonstrate the validity of the approach.

References

[1]
J. Borenstein and Y. Koren, Obstacle avoidance with ultrasonic sensors, IEEE Trans. Robot. Automat. pp. 213-218, 1988.
[2]
H. Surmann, K. Lingemann, A. Nüchter and J. Hertzberg, A 3D laser range finder for autonomous mobile robots, in: Proceedings of the 32nd International Symposium on Robotics (ISR'01), pp. 153-158, 2001.
[3]
K. Kaliyaperumal and S. Lakshmanan, An Algorithm for Detecting Roads and Obstacles in Radar Images, IEEE Trans on Vehicular Technology, pp. 170-182, 2001.
[4]
M. Bertozzi, A. Broggi, and A. Fascioli. A stereo vision system for real-time automotive obstacle detection. IEEE International Conference on Image Processing, pp. 681-684, 1996.
[5]
S. Nedevschi, R. Schmidt, T. Graf, R. Danescu, D. Frentiu, T. Marita, F. Oniga and C. Pocol, High accuracy stereo vision system for far distance obstacle detection, IEEE Intelligent Vehicles Symposium, pp. 161-166, 2004.
[6]
Y. Lu, J. Zhang, Q. Wu and Z. Li, A survey of motion-parallax-based 3-D reconstruction algorithms, IEEE Transactions on System, Man and Cybernetics C 34(4), pp. 532-548, 2004.
[7]
J.-C. Zufferey and D. Floreano, Toward 30-gram autonomous indoor aircraft: Vision-based obstacle avoidance and altitude control, IEEE International Conference on Robotics and Automation, Barcelona, 2005.
[8]
I. Ulrich and I. Nourbakhsh, Appearance-based obstacle detection with monocular color vision, AAAI, pp. 866-871, 2000.
[9]
S. Lenser and M. Veloso, Visual sonar: Fast obstacle avoidance using monocular vision, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.
[10]
D. Santosh, S. Achar and C.V. Jawahar, Autonomous image-based exploration for mobile robot navigation, IEEE International Conference on Robotics and Automation, 2008.
[11]
H. Tao, H.S. Sawhney and R. Kumar, A global matching framework for stereo computation, In Proc. ICCV, pp. 532-539, 2001.
[12]
X. Ren and J. Malik, Learning a classification model for segmentation, In Proc. ICCV, 2003.
[13]
Y. Li, J. Sun, C.-K. Tang and H.-Y. Shum, Lazy snapping, ACM Trans. on Graphics, 23(3):303-308, 2004.
[14]
P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation, International Journal of Computer Vision, 59(2): pp. 167-181, 2004.
[15]
D. Hoiem, A. A. Efros and M. Hebert, Automatic photo pop-up, ACM SIGGRAPH 2005 Conference, Los Angeles, CA: Assoc Computing Machinery, 2005.
[16]
D. Hoiem, A. A. Efros and M. Hebert, Recovering surface layout from an image, International Journal of Computer Vision, 75(1): pp. 151-172, 2007.
[17]
M. Collins, R. Schapire, and Y. Singer, Logistic regression, adaboost and bregman distances, Machine Learning 48, 1-3, 253-285, 2002.
[18]
R. Duda, P. Hart and D. Stork, Pattern Classification, Wiley-Interscience Publication. 2000.
[19]
J. Friedman, T. Hastie and R. Tibshirani, Additive logistic regression: a statistical view of boosting. Annals of Statistics 28, 2, 337-407, 2000.
[20]
Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): pp. 1330-1334, 2000.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
CCDC'09: Proceedings of the 21st annual international conference on Chinese control and decision conference
June 2009
6219 pages
ISBN:9781424427222

Publisher

IEEE Press

Publication History

Published: 17 June 2009

Author Tags

  1. image exploration
  2. image segmentation
  3. monocular vision
  4. obstacle avoidance

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media