[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A Comparative Study of Machine Learning Techniques for Android Malware Detection

Published: 22 September 2022 Publication History

Abstract

The rapid growth and wide availability of Android applications in recent years has resulted in a spike in the number of sophisticated harmful applications targeting Android users. Because of the popularity and amount of open-sourced supported features of Android OS, cyber attackers prefer to target Android-based devices over other smartphones. Malicious programs endanger user privacy and device integrity. To address this issue, the authors investigated machine learning algorithms for detecting malware in Android in this study. They employed a static analysis approach, collecting permissions from each application's APK and then generating feature vectors based on the extracted permissions. Finally, they trained several machine learning algorithms to create classification models that can distinguish between benign and malicious applications. According to experimental findings, random forest and multi-layer perceptron approaches, which have accuracy levels of 95.4% and 95.1%, respectively, have the best classification performance.

References

[1]
APKCombo. (2018). Retrieved July 19, 2022, from https://apkcombo.com/
[2]
Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining api-level features for robust malware detection in android. In International conference on security and privacy in communication systems (pp. 86-103). Springer.
[3]
Afonso, V. M., de Amorim, M. F., Grégio, A. R. A., Junquera, G. B., & de Geus, P. L. (2015). Identifying Android malware using dynamically obtained features. Journal of Computer Virology and Hacking Techniques, 11(1), 9–17.
[4]
Alam, M. S., & Vuong, S. T. (2013, August). Random forest classification for detecting android malware. In 2013 IEEE international conference on green computing and communications and IEEE Internet of Things and IEEE cyber, physical and social computing (pp. 663-669). IEEE.
[5]
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, February). Drebin: Effective and explainable detection of android malware in your pocket. In NDSS (Vol. 14, pp. 23-26). Academic Press.
[6]
BurgueraI.ZurutuzaU.Nadjm-TehraniS. (2011, October). Crowdroid: behavior-based malware detection system for android. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices (pp. 15-26). 10.1145/2046614.2046619
[7]
Cai, H., Meng, N., Ryder, B., & Yao, D. (2018). Droidcat: Effective android malware detection and categorization via app-level profiling. IEEE Transactions on Information Forensics and Security, 14(6), 1455–1470.
[8]
CanforaG.MedvetE.MercaldoF.VisaggioC. A. (2015, August). Detecting android malware using sequences of system calls. In Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile (pp. 13-20). 10.1145/2804345.2804349
[9]
ChanP. P.SongW. K. (2014, July). Static detection of Android malware by using permissions and API calls. In 2014 International Conference on Machine Learning and Cybernetics (Vol. 1, pp. 82-87). IEEE. 10.1109/ICMLC.2014.7009096
[10]
Chen, T., Mao, Q., Yang, Y., Lv, M., & Zhu, J. (2018). Tinydroid: a lightweight and efficient model for android malware detection and classification. Mobile Information Systems.
[11]
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
[12]
Costa, E., Lorena, A., Carvalho, A. C. P. L. F., & Freitas, A. (2007, July). A review of performance evaluation measures for hierarchical classifiers. In Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop (pp. 1-6). Academic Press.
[13]
G DATA. (2022, June 2). G DATA Mobile Security Report. Retrieved July 22, 2022, from https://www.gdatasoftware.com/news/2022/02/37321-g-data-mobile-security-report-more-than-25-million-new-malware-apps-for-android-devices
[14]
Gao, T., Peng, W., Sisodia, D., Saha, T. K., Li, F., & Al Hasan, M. (2018). Android malware detection via graphlet sampling. IEEE Transactions on Mobile Computing, 18(12), 2754–2767.
[15]
GasconH.YamaguchiF.ArpD.RieckK. (2013, November). Structural detection of android malware using embedded call graphs. In Proceedings of the 2013 ACM workshop on Artificial intelligence and security (pp. 45-54). 10.1145/2517312.2517315
[16]
Google. (n.d.). AAPT2 (Android Asset Packaging Tool). Retrieved July 22, 2022, from https://developer.android.com/studio/command-line/aapt2
[17]
Hinton, G. E. (1990). Connectionist learning procedures. In Machine learning (pp. 555–610). Morgan Kaufmann.
[18]
Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI (Vol. 14, No. 2, pp. 1137-1145). Academic Press.
[19]
Larose, D. T., & Larose, C. D. (2005). K-nearest neighbor algorithm. Discovering knowledge in data: An introduction to data mining, 90, 106.
[20]
LiD.WangZ.XueY. (2018, May). Fine-grained android malware detection based on deep learning. In 2018 IEEE Conference on Communications and Network Security (CNS) (pp. 1-2). IEEE. 10.1109/CNS.2018.8433204
[21]
Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission identification for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics, 14(7), 3216–3225.
[22]
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
[23]
Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective (Vol. 453). Springer Science & Business Media.
[24]
Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2016). Mamadroid: Detecting android malware by building markov chains of behavioral models. arXiv preprint arXiv:1612.04433.
[25]
MartinelliF.MercaldoF.SaracinoA. (2017, April). Bridemaid: An hybrid tool for accurate detection of android malware. In Proceedings of the 2017 ACM on Asia conference on computer and communications security (pp. 899-901). 10.1145/3052973.3055156
[26]
McLaughlinN.Martinez del RinconJ.KangB.YerimaS.MillerP.SezerS.Joon AhnG. (2017, March). Deep android malware detection. In Proceedings of the seventh ACM on conference on data and application security and privacy (pp. 301-308). 10.1145/3029806.3029823
[27]
Mnif, M. G., & Bouamama, S. (2020). A new multi-objective firework algorithm to solve the multimodal planning network problem. International Journal of Applied Metaheuristic Computing, 11(4), 91–113.
[28]
Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia, 18(60), 1-8.
[29]
Quinlan, J. R. (1996). Learning decision tree classifiers. ACM Computing Surveys, 28(1), 71–72.
[30]
Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G., & Álvarez, G. (2013). Puma: Permission usage to detect malware in android. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions (pp. 289-298). Springer.
[31]
Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: A behavioral malware detection framework for android devices. Journal of Intelligent Information Systems, 38(1), 161–190.
[32]
Shen, F., Del Vecchio, J., Mohaisen, A., Ko, S. Y., & Ziarek, L. (2018). Android malware detection using complex-flows. IEEE Transactions on Mobile Computing, 18(6), 1231–1245.
[33]
Wang, W., Gao, Z., Zhao, M., Li, Y., Liu, J., & Zhang, X. (2018). DroidEnsemble: Detecting Android malicious applications with ensemble of string and structural static features. IEEE Access: Practical Innovations, Open Solutions, 6, 31798–31807.
[34]
Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014). Exploring permission-induced risk in android applications for malicious application detection. IEEE Transactions on Information Forensics and Security, 9(11), 1869–1882.
[35]
WuW. C.HungS. H. (2014, October). DroidDolphin: a dynamic Android malware detection framework using big data and machine learning. In Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems (pp. 247-252). 10.1145/2663761.2664223
[36]
Xu, W., Zhang, F., & Zhu, S. (2013, November). Permlyzer: Analyzing permission usage in android applications. In 2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE) (pp. 400-410). IEEE.
[37]
YuanZ.LuY.WangZ.XueY. (2014, August). Droid-sec: deep learning in android malware detection. In Proceedings of the 2014 ACM conference on SIGCOMM (pp. 371-372). 10.1145/2619239.2631434

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Software Innovation
International Journal of Software Innovation  Volume 10, Issue 1
Sep 2022
2247 pages
ISSN:2166-7160
EISSN:2166-7179
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 22 September 2022

Author Tags

  1. Android Malware Detection
  2. Android Permissions
  3. Binary Classification
  4. Machine Learning

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media