[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Things-Net: : A Hierarchical Petri Net Model for Internet of Things Systems

Published: 06 May 2022 Publication History

Abstract

The Internet of things aims to create a continuity between real and digital worlds, by integrating physical objects into the digital universe. This will increase the number of connected machines and generate new applications. When combined according to an appropriate logic, IoT objects can produce value-added services that a single object cannot provide. In order to avoid costly errors, this execution logic has to be modeled and validated, using a formal model, before its effective deployment. To address the lack of special-purpose modeling languages for IoT applications, the authors propose the Things-Net model, designed specifically to meet the needs of IoT-based systems. It allows an easy modeling and verification of IoT time-dependent platforms, to ensure that the designed IoT solution fulfills the application's requirements. In order to illustrate the approach, authors apply the modeling and verification techniques to a prototype of an airport management system based on IoT.

References

[1]
Ahmad, S., Malik, S., Ullah, I., Park, D. H., Kim, K., & Kim, D. (2019). Towards the Design of a Formal Verification and Evaluation Tool of Real-Time Tasks Scheduling of IoT Applications. Sustainability, 11(1), 204.
[2]
Aktas, M. S., & Astekin, M. (2019). Provenance aware run-time verification of things for selfhealing Internet of Things applications. Concurrency and Computation, 31(3), e4263.
[3]
Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet of Things applications: A systematic review . Computer Networks, Elsevier, 148, 241–261.
[4]
Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet of Things applications: A systematic review. Computer Networks, Elsevier, 148, 241–261.
[5]
BouyakoubS.BelkhirA. (2008). H-SMIL-Net: A Hierarchical Petri Net Model for SMIL Documents. Proceedings of the 10th International Conference on Computer Modeling and Simulation Cambridge, 106-111. 10.1109/UKSIM.2008.54
[6]
Bouyakoub, S., & Belkhir, A. (2011). SMIL builder: An incremental authoring tool for SMIL Documents. ACM Transactions on Multimedia Computing Communications and Applications, 7(1), 1–30.
[7]
BouyakoubS.BelkhirA.BouyakoubF. M.GuebliW. (2017). Smart airport: an IoT-based Airport Management System. Proceedings of the International Conference on Future Networks and Distributed Systems, 1-7. 10.1145/3102304.3105572
[8]
Cho, T. H., & Jeon, G. M. (2016). A method for detecting man-in-the-middle attacks using time synchronization one time password in interlock protocol based Internet of Things. Journal of Applied and Physical Sciences, 2(2), 37–41.
[9]
Diwan, M., & D’Souza, M. (2017). A Framework for Modeling and Verifying IoT Communication Protocols. In K. G. Larsen, O. Sokolsky & J. Wang (Eds.), Dependable Software Engineering. Theories, Tools, and Applications: Third International Symposium, SETTA 2017, Changsha, China, Proceedings (pp. 266-280). Cham: Springer International Publishing. 10.1007/978-3-319-69483-2_16
[10]
Drozdov, D., Patil, S., Dubinin, V., & Vyatkin, V. (2017). Towards formal verification for cyberphysicallyagnostic software: A case study. Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society, 5509-5514.
[11]
Elleuch, M., Hasan, O., Tahar, S., & Abid, M. (2017). Formal Probabilistic Analysis of a WSNBased Monitoring Framework for IoT Applications. In C. Artho & P. C. Ölveczky (Eds.), Formal Techniques for Safety-Critical Systems: 5th International Workshop (pp. 93-108). Cham: Springer International Publishing.
[12]
Jaydip, S. (Ed.). (2018). Internet of Things: Technology, Applications and Standardization. IntechOpen.
[13]
Jha, S. K., Panigrahi, N., & Gupta, A. (2019). Security Threats for Time Synchronization Protocols in the Internet of Things. In Peng, S.-L., Pal, S., & Huang, L. (Eds.), Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Springer.
[14]
Kammüller, F. (2018) Human Centric Security and Privacy for the IoT Using Formal Techniques. In D. Nicholson (Ed.), Advances in Human Factors in Cybersecurity: Proceedings of the AHFE 2017 International Conference on Human Factors in Cybersecurity (pp. 106-116). Cham: Springer International Publishing. 10.1007/978-3-319-60585-2_12
[15]
KimH.KangE.LeeE. A.BromanD. (2017). A Toolkit for Construction of Authorization Service Infrastructure for the Internet of Things. Proceedings of the 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation, 147-158. 10.1145/3054977.3054980
[16]
Konieczek, B., Rethfeldt, M., Golatowski, F., & Timmermann, D. (2015). Real-Time Communication for the Internet of Things Using jCoAP. Proceedings of the 18th IEEE International Symposium on Real-Time Distributed Computing, 134-141. 10.1109/ISORC.2015.35
[17]
Lanotte, R., & Merro, M. (2018). A semantic theory of the Internet of Things. Information and Computation, 259(1), 72–101.
[18]
Mangano, F., Duquennoy, S., & Kosmatov, N. (2017). Formal Verification of a Memory Allocation Module of Contiki with Frama-C: A Case Study. In F. Cuppens, N. Cuppens, J.-L. Lanet & A. Legay (Eds.), Risks and Security of Internet and Systems: 11th International Conference, CRiSIS 2016 (pp. 114-120). Cham: Springer International Publishing. 10.1007/978-3-319-54876-0_9
[19]
ManiS. K.DurairajanR.BarfordP.SommersJ. (2018). An architecture for IoT clock synchronization. In Proceedings of the 8th International Conference on the Internet of Things (pp.1–8). Association for Computing Machinery.
[20]
Navas, R. E., & Toutain, L. (2018). LATe: A Lightweight Authenticated Time Synchronization Protocol for IoT. Proceedings of the 2018 Global Internet of Things Summit, 1-6.
[21]
Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M. L., & Sangaiah, A. K. (2018). A Robust Time Synchronization Scheme for Industrial Internet of Things. Proceedings of IEEE Transactions on Industrial Informatics, 14(8), 3570-3580.
[22]
Qu, T., Lei, S. P., Wang, Z. Z., Nie, D. X., Chen, X., & Huang, G. Q. (2015). IoT-based real-time production logistics synchronization system under smart cloud manufacturing. International Journal of Advanced Manufacturing Technology, 84(1-4), 147–164.
[23]
Saxena, D., & Raychoudhury, V. (2019). Design and Verification of an NDN-Based Safety-Critical Application: A Case Study with Smart Healthcare. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 49(5), 991–1005.
[24]
Souri, A., & Norouzi, M. (2019). A state-of-the-art survey on formal verification of the internet of things applications. Journal of Service Science Research, Springer, 9(2), 219–237.
[25]
Stankovic, J. A. (2014). Research directions for the internet of things . IEEE Internet of Things Journal, 1(1), 3–9.
[26]
Tata, S., Klai, K., & Jain, R. (2017). Formal Model and Method to Decompose Process-Aware IoT Applications. In H. Panetto, C. Debruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna & R. Meersman (Eds.), On the Move to Meaningful Internet Systems (pp. 663- 680). Cham: Springer International Publishing.
[27]
Tirado-Andrés, F., Rozas, A., & Araujo, Á. (2019). A methodology for choosing time synchronization strategies for wireless IoT networks. Sensors (Basel), 19(16), 3476. 31395809.
[28]
ViswanathanS.TanR.YauD. K. Y. (2016). Exploiting Power Grid for Accurate and Secure Clock Synchronization in industrial IoT. Proceedings of 2016 IEEE Real-Time Systems Symposium, 146-156. 10.1109/RTSS.2016.023
[29]
Xu, S., Miao, W., Kunz, T., Wei, T., & Chen, M. (2016). Quantitative Analysis of Variation-Aware Internet of Things Designs Using Statistical Model Checking. Proceedings of the IEEE International Conference on Software Quality, Reliability and Security, 274-285.
[30]
Yuan, B., Chen, D., Xu, D., & Chen, M. (2019). Conceptual model of real-time IoT systems. Frontiers of Information Technology & Electronic Engineering, 20(11), 1457–1464.
[31]
ZdravkovićM.TrajanovićM.SarraipaJ.Jardim-GonçalvesR. (2016) Survey of Internet-of-Things platforms. Proceedings of 6th International Conference on Information Society and Technology, 216-220.
[32]
ZhouB.VuranM. C. (2019). CorTiS: Correlation-Based Time Synchronization in Internet of Things. Proceedings of IEEE International Conference on Communications, 1-7. 10.1109/ICC.2019.8761501

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Software Innovation
International Journal of Software Innovation  Volume 10, Issue 1
Sep 2022
2247 pages
ISSN:2166-7160
EISSN:2166-7179
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 06 May 2022

Author Tags

  1. Internet of Things
  2. Modeling
  3. Petri Nets
  4. Temporal Constraints
  5. Verification

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media