[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Classification of DOS Attacks Using Visualization Technique

Published: 01 April 2014 Publication History

Abstract

A denial-of-service attack DoS attack or distributed denial-of-service attack DDoS attack is an attempt to make a machine or network resource unavailable to its intended users. In this paper, a new technique for detecting DoS attacks is proposed; it detects DOS attacks using a set of classifiers and visualizes them in real time. This technique is based on the collection of network parameter values data packets which are automatically represented by simple geometric graphs form in order to highlight relevant elements. The effectiveness of the proposed technique has been proven through a MATLAB simulation of network traffic drawn from the 10% KDD, and a comparison with other classification techniques for intrusion detection.

References

[1]
AikateriniM.ChristosD. 2005. "Detecting Denial of Service Attacks Using Emergent Self-Organizing Maps", 2005 IEEE International Symposium on Signal Processing and Information Technology, 2005
[2]
Anderson.J,1980 "Computer security threat monitoring and surveillance", 1980.
[3]
Boudaoud, K. 2000, "Détection d'intrusions: Une nouvelle approche par systèmes multi-agents", thèse de doctorat de l'école Polytechnique Fédérale de Lausanne, 2000.
[4]
Cannady, J. 1998.Articial neural networks for misuse detection. In Proceedings of the 1998 National Information Systems Security Conference NISSC'98 October 5-8 1998. Arlington, VA., pages 443{456, 1998.
[5]
Chittur, A. 2001. Model generation for an intrusion detection system using genetic al-gorithms. PhD thesis, Ossining High School. In cooperation with Columbia Univ. 2001.
[6]
Cohen, W. W. 1995. Fast effective rule induction. In Machine Learning: the 12th International Conference, Lake T aho, CA, 1995. Morgan Kaufmann. 10.1016/B978-1-55860-377-6.50023-2
[7]
Debar, H., Becker, M., & Siboni, D. 1992. A neural network component for an intrusion detection system. In SP '92: Proceedings of the 1992 IEEE Symposium on Security and Privacy, page 240, Wash-ington, DC, USA, 1992. IEEE Computer Society. 10.1109/RISP.1992.213257
[8]
Denning.D,1987 "An intrusion-detection model", IEEE Transactions on software engineering, SE-13: 222-232, 1987.
[9]
Dickerson, J. E., & Dickerson, J. A. 2000. Fuzzy network profiling for intrusion detection. In Proc. of NAFIPS 19th International Conference of the North American Fuzzy Information Processing Society, Atlanta, page 301306. North American Fuzzy In-formation Processing Society NAFIPS, July 2000.
[10]
Fady, H. A. M. O. U. I. 2007. ¿ détection de fraudes et Extraction de Connaissances ¿, Master's thesis, montpellier 2 Univ, 2007
[11]
Giordana.A, Neri.F, and Saitta.L, 1995. Search-intensive concept induction, Evolutionary Computation. 34, 375{416, 1995.
[12]
Jiang, S., Song, X., Wang, H., Han, J.-J., & Li, Q.-H. 2006. A clustering-based method for unsupervised intrusion detections . Pattern Recognition Letters, 277, 802-810.
[13]
JirapumminC.WattanapongsakornN.KanthamanonP. 2002. Hybrid neural networks for intrusion detection system, 2002 International Technical Conference on Circuits/Systems,Computers and Communications ITC-CSCC 2002 Phuket, Thailand, pp. 928-931, 2002.
[14]
KaplantzisS.ManiN. 2006. A study on classification techniques for network intrusion detection, in: IASTED Conference on Networks and Communication Systems NCS 2006, Thailand, March 2006.
[15]
Kayacik, G. 2006. H, Zincir-Heywood. A.N, and M.I. Heywood, 2006. "A hierarchal SOM-based intrusion detection system . Engineering Applications of Artificial Intelligence.
[16]
KayacıkH. G.Zincir-HeywoodA. N.HeywoodM. I. 2005. "Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets," in Third Annual Conference on Privacy, Security and Trust, St. Andrews, New Brunswick, Canada, October 2005.
[17]
Kevin, L. Fox, Ronda R. Henning, Jonathan H. Reed, and Richard P. Simonian. 1990. A neural network approach towards intrusion detection. In Proceedings of the 13th national computer security conference, pages p.125{34, October 1990.
[18]
Kim, D. S., & Park, J. S. 2003. Lecture Notes in Computer Science: Vol. 2662. Network-based Intrusion Detection with Support Vector Machines pp. 747-756. Berlin, Heidelberg: Springer-Verlag.
[19]
Kumar, S., & Spafford, E. G. 1995. "A Software Architecture to support Misuse Intrusion Detection". Technical Report CSD-TR-95-009, Purdue University, 1995.
[20]
LeeW.StolfoS. 1998. Data mining approaches for intrusion detection. In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.
[21]
Lee, W., & Stolfo, S. J. 2000. A framework for constructing features and models for intrusion detection systems. Information and System Security, 34, 227261.
[22]
LeeW.StolfoS. J.MokK. W. 1999. A data mining framework for building intrusion detection models. In IEEE Symposium on Security and Privacy, pages 120132, 1999.
[23]
Lee, W., Stolfo, S. J., & Mok, K. W. 2000. Adaptive intrusion detection, a data mining approach. Artificial Intelligence Review, 146, 533567.
[24]
Lue, J. 1999. Integrating fuzzy logic with data mining methods for intrusion detection. Master's thesis, Mississippi State Univ, 1999.
[25]
Maxime DUMAS, 2011. ¿ Alertwheel: Visualisation radiale de graphes bipartis appliquée aux systèmes de détection d'intrusions sur des réseaux informatiques ¿, Mémoire de l'école de technologie supérieure, université du QUÉBEC, 2011
[26]
Srinivas Mukkamala, Andrew H. Sung, and Ajith Abraham. 2003. Intrusion detection using ensemble of soft computing paradigms, 2003.
[27]
Naoum.R.S.Abdula Abid.N, Namh Al-Sultani.Z, 2012. "An Enhanced Resilient Backpropagation Artificial Neural Network for Intrusion Detection System", IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012
[28]
Neri, F. 2000. Comparing local search with respect to genetic evolution to detect in-trusion in computer networks. In Proceedings of the 2000 Congress on Evolutionary Computation CEC00, pages 238243, La Jolla Marriott Hotel La Jolla, California, USA, 6-9 2000. IEEE Press.
[29]
Pari, P. 2011-2013 ¿ Classification consensuelle ¿, http://pari.ai.univ-paris8.fr/?author=1
[30]
Ryan, J., Lin, M.-J., & Miikkulainen, R. 1998. Intrusion detection with neural networks. In Jordan, M. I., Kearns, M. J., & Solla, S. A. Eds., Advances in Neural Information Processing Systems: Vol. 10. The MIT Press, 1998.
[31]
Sammany, M., Sharawi, M., El-Beltagy, M., & Saroit, I. 2007. "Artificial Neural Networks Architecture for Intrusion Detection Systems and Classification of Attacks ".Accepted for publication in the fifth international conference- INFO 2007, March,2007
[32]
Saneifar, H. 2008. ¿ Clustering de motifs séquentiels Application í la détection d'intrusions ¿, Master's thesis, montpellier 2 Univ, 2008.
[33]
Sinclair, C., Pierce, L., & Matzner, S. 1999. An application of machine learning to network intrusion detection. In ACSAC '99: Proceedings of the 15th Annual Computer Security Applications Conference, page 371, Washington, DC, USA, 1999. IEEE Computer Society. 10.1109/CSAC.1999.816048
[34]
Sundaram, A. 1996. "An Introduction to Intrusion Detection", Technical Report, Purdue University, 1996.
[35]
Vapnik, V. N. 1998. Statistical learning theory. Adaptive and learning systems for signal processing, commu-nications, and control. New York: Wiley.
[36]
Yang, Y. 1997. An evaluation of statistical approach to text categorization. Rapport interne Technichal Report CMU-CS-97-127, Carnegie Mellon University, 1997

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Information Security and Privacy
International Journal of Information Security and Privacy  Volume 8, Issue 2
April 2014
68 pages
ISSN:1930-1650
EISSN:1930-1669
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 01 April 2014

Author Tags

  1. Classification Technique
  2. Denial of Service DoS Attack
  3. Intrusion Detection System IDS
  4. KDD
  5. Network Security

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media