• Das Antar A, Molaei S, Chen Y, Lee M and Banovic N. VIME: Visual Interactive Model Explorer for Identifying Capabilities and Limitations of Machine Learning Models for Sequential Decision-Making. Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology. (1-21).

    https://doi.org/10.1145/3654777.3676323

  • Kongmanee J, Chung M, Luna A, Zhan L, Jerath K, Raman A and Chignell M. (2024). A Human-AI Interaction Dashboard for Detecting Potentially Malicious Emails 2024 IEEE 4th International Conference on Human-Machine Systems (ICHMS). 10.1109/ICHMS59971.2024.10555737. 979-8-3503-1579-0. (1-6).

    https://ieeexplore.ieee.org/document/10555737/

  • Hu Z, Liu H, Xiong Y, Wang L, Wu R, Guan K, Hu Y, Lyu T and Fan C. (2023). Promoting human-AI interaction makes a better adoption of deep reinforcement learning: a real-world application in game industry. Multimedia Tools and Applications. 10.1007/s11042-023-15361-6. 83:2. (6161-6182). Online publication date: 1-Jan-2024.

    https://link.springer.com/10.1007/s11042-023-15361-6

  • Lee B, Downey D, Lo K and Weld D. (2023). LIMEADE: From AI Explanations to Advice Taking. ACM Transactions on Interactive Intelligent Systems. 13:4. (1-29). Online publication date: 31-Dec-2024.

    https://doi.org/10.1145/3589345

  • Chung J and Adar E. Artinter: AI-powered Boundary Objects for Commissioning Visual Arts. Proceedings of the 2023 ACM Designing Interactive Systems Conference. (1997-2018).

    https://doi.org/10.1145/3563657.3595961

  • Mishra S and Rzeszotarski J. Human Expectations and Perceptions of Learning in Machine Teaching. Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization. (13-24).

    https://doi.org/10.1145/3565472.3595612

  • Chang R and Wang J. (2023). Color Pattern Analogy: AI-Assisted Chinese Blue–Green Landscape Painting Restoration 2023 8th International Conference on Information and Network Technologies (ICINT). 10.1109/ICINT58947.2023.00008. 979-8-3503-0145-8. (1-6).

    https://ieeexplore.ieee.org/document/10353905/

  • Kang H, Soliman N, Latzke M, Chang J and Bragg J. ComLittee: Literature Discovery with Personal Elected Author Committees. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. (1-20).

    https://doi.org/10.1145/3544548.3581371

  • Brand N, Odom W and Barnett S. Envisioning and Understanding Orientations to Introspective AI: Exploring a Design Space with Meta.Aware. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. (1-18).

    https://doi.org/10.1145/3544548.3581336

  • Wenskovitch J, Dowling M and North C. (2023). Towards Addressing Ambiguous Interactions and Inferring User Intent with Dimension Reduction and Clustering Combinations in Visual Analytics. ACM Transactions on Interactive Intelligent Systems. 0:0.

    https://doi.org/10.1145/3588565

  • Feng K and Mcdonald D. Addressing UX Practitioners’ Challenges in Designing ML Applications: an Interactive Machine Learning Approach. Proceedings of the 28th International Conference on Intelligent User Interfaces. (337-352).

    https://doi.org/10.1145/3581641.3584064

  • Arapoglu O and Ciftci R. (2022). Determining the Course Interests of Gifted Students using Machine Learning 2022 3rd International Informatics and Software Engineering Conference (IISEC). 10.1109/IISEC56263.2022.9998191. 978-1-6654-5995-2. (1-4).

    https://ieeexplore.ieee.org/document/9998191/

  • Epstein D, Liu F, Monroy-Hernández A and Wang D. (2022). Revisiting Piggyback Prototyping: Examining Benefits and Tradeoffs in Extending Existing Social Computing Systems. Proceedings of the ACM on Human-Computer Interaction. 6:CSCW2. (1-28). Online publication date: 7-Nov-2022.

    https://doi.org/10.1145/3555557

  • Pu K, Fu R, Dong R, Wang X, Chen Y and Grossman T. SemanticOn: Specifying Content-Based Semantic Conditions for Web Automation Programs. Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology. (1-16).

    https://doi.org/10.1145/3526113.3545691

  • Schlett T, Rathgeb C, Henniger O, Galbally J, Fierrez J and Busch C. (2022). Face Image Quality Assessment: A Literature Survey. ACM Computing Surveys. 54:10s. (1-49). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3507901

  • Schlag S, Schmitt M and Schulz C. (2021). Faster Support Vector Machines. ACM Journal of Experimental Algorithmics. 26. (1-21). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3484730

  • Arroyuelo D, Cánovas R, Fischer J, Köppl D, Löbel M, Navarro G and Raman R. (2021). Engineering Practical Lempel-Ziv Tries. ACM Journal of Experimental Algorithmics. 26. (1-47). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3481638

  • Goodrich T, Horton E and Sullivan B. (2021). An Updated Experimental Evaluation of Graph Bipartization Methods. ACM Journal of Experimental Algorithmics. 26. (1-24). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3467968

  • Fichte J, Hecher M and Hamiti F. (2021). The Model Counting Competition 2020. ACM Journal of Experimental Algorithmics. 26. (1-26). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3459080

  • Fischl W, Gottlob G, Longo D and Pichler R. (2021). HyperBench. ACM Journal of Experimental Algorithmics. 26. (1-40). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3440015

  • Wallace S, Papoutsaki A, Tan N, Guo H and Huang J. (2021). Case Studies on the Motivation and Performance of Contributors Who Verify and Maintain In-Flux Tabular Datasets. Proceedings of the ACM on Human-Computer Interaction. 5:CSCW2. (1-25). Online publication date: 13-Oct-2021.

    https://doi.org/10.1145/3479592

  • Barta K and Andalibi N. (2021). Constructing Authenticity on TikTok: Social Norms and Social Support on the "Fun" Platform. Proceedings of the ACM on Human-Computer Interaction. 5:CSCW2. (1-29). Online publication date: 13-Oct-2021.

    https://doi.org/10.1145/3479574

  • Ernala S, Yang S, Wu Y, Chen R, Wells K and Das S. (2021). Exploring the Utility Versus Intrusiveness of Dynamic Audience Selection on Facebook. Proceedings of the ACM on Human-Computer Interaction. 5:CSCW2. (1-30). Online publication date: 13-Oct-2021.

    https://doi.org/10.1145/3476083

  • Kim S, Razi A, Stringhini G, Wisniewski P and De Choudhury M. (2021). A Human-Centered Systematic Literature Review of Cyberbullying Detection Algorithms. Proceedings of the ACM on Human-Computer Interaction. 5:CSCW2. (1-34). Online publication date: 13-Oct-2021.

    https://doi.org/10.1145/3476066

  • Elkin L, Kay M, Higgins J and Wobbrock J. An Aligned Rank Transform Procedure for Multifactor Contrast Tests. The 34th Annual ACM Symposium on User Interface Software and Technology. (754-768).

    https://doi.org/10.1145/3472749.3474784

  • Cao F, Tu Y and Brown E. (2021). SHIM: Semantic Hierarchical clustering with Interactive Machine learning 2021 IEEE Workshop on Machine Learning from User Interactions (MLUI). 10.1109/MLUI54255.2021.00007. 978-1-6654-1372-5. (12-20).

    https://ieeexplore.ieee.org/document/9619873/

  • Yarlagadda S, Scroggins D, Cao F, Devabhaktuni Y, Buitron F and Brown E. (2021). DocTable: Table-Oriented Interactive Machine Learning for Text Corpora 2021 IEEE Workshop on Machine Learning from User Interactions (MLUI). 10.1109/MLUI54255.2021.00006. 978-1-6654-1372-5. (1-11).

    https://ieeexplore.ieee.org/document/9619903/

  • Chignell M, Chung M, Yang Y, Cento G and Raman A. (2021). Human Factors in Interactive Machine Learning: A Cybersecurity Case Study. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 10.1177/1071181321651206. 65:1. (1495-1499). Online publication date: 1-Sep-2021.

    https://journals.sagepub.com/doi/10.1177/1071181321651206

  • Qureshi K and Qiu E. (2021). Mathematics of Trust: Controlled and Uncontrolled Influence in Social Systems 2021 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN52387.2021.9534172. 978-1-6654-3900-8. (1-8).

    https://ieeexplore.ieee.org/document/9534172/

  • Scurto H, Kerrebroeck B, Caramiaux B and Bevilacqua F. (2021). Designing Deep Reinforcement Learning for Human Parameter Exploration. ACM Transactions on Computer-Human Interaction. 28:1. (1-35). Online publication date: 1-Feb-2021.

    https://doi.org/10.1145/3414472

  • Yang F, Yu Z, Chen L, Gu J, Li Q and Guo B. (2021). Human-Machine Cooperative Video Anomaly Detection. Proceedings of the ACM on Human-Computer Interaction. 4:CSCW3. (1-18). Online publication date: 5-Jan-2021.

    https://doi.org/10.1145/3434183

  • Sharma S and Sharma S. (2020). Analyzing the depression and suicidal tendencies of people affected by COVID-19’s lockdown using sentiment analysis on social networking websites. Journal of Statistics and Management Systems. 10.1080/09720510.2020.1833453. (1-19).

    https://www.tandfonline.com/doi/full/10.1080/09720510.2020.1833453

  • Stones R, Falcón R, Kotlar D and Marbach T. (2020). Computing Autotopism Groups of Partial Latin Rectangles. ACM Journal of Experimental Algorithmics. 25. (1-39). Online publication date: 6-Dec-2020.

    https://doi.org/10.1145/3412324

  • Kirchbach K, Schulz C and Träff J. (2020). Better Process Mapping and Sparse Quadratic Assignment. ACM Journal of Experimental Algorithmics. 25. (1-19). Online publication date: 6-Dec-2020.

    https://doi.org/10.1145/3409667

  • Henzinger A, Noe A and Schulz C. (2020). ILP-Based Local Search for Graph Partitioning. ACM Journal of Experimental Algorithmics. 25. (1-26). Online publication date: 6-Dec-2020.

    https://doi.org/10.1145/3398634

  • Charalampopoulos P, Iliopoulos C, Liu C and Pissis S. (2020). Property Suffix Array with Applications in Indexing Weighted Sequences. ACM Journal of Experimental Algorithmics. 25. (1-16). Online publication date: 6-Dec-2020.

    https://doi.org/10.1145/3385898

  • Graf T and Lemire D. (2020). Xor Filters. ACM Journal of Experimental Algorithmics. 25. (1-16). Online publication date: 6-Dec-2020.

    https://doi.org/10.1145/3376122

  • Chung M, Chignell M, Wang L, Jovicic A and Raman A. (2020). Interactive Machine Learning for Data Exfiltration Detection: Active Learning with Human Expertise 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 10.1109/SMC42975.2020.9282831. 978-1-7281-8526-2. (280-287).

    https://ieeexplore.ieee.org/document/9282831/

  • Cao F and Brown E. (2020). DRIL: Descriptive Rules by Interactive Learning 2020 IEEE Visualization Conference (VIS). 10.1109/VIS47514.2020.00058. 978-1-7281-8014-4. (256-260).

    https://ieeexplore.ieee.org/document/9331309/

  • González Martínez A, Wooton B, Kirshenbaum N, Kobayashi D and Leigh J. Exploring Collections of research publications with Human Steerable AI. Practice and Experience in Advanced Research Computing 2020: Catch the Wave. (339-348).

    https://doi.org/10.1145/3311790.3396646

  • Chua M, Yee G, Gu Y and Lung C. (2020). Threats to Online Advertising and Countermeasures. Digital Threats: Research and Practice. 1:2. (1-27). Online publication date: 30-Jun-2020.

    https://doi.org/10.1145/3374136

  • Nadj M, Knaeble M, Li M and Maedche A. (2020). Power to the Oracle? Design Principles for Interactive Labeling Systems in Machine Learning. KI - Künstliche Intelligenz. 10.1007/s13218-020-00634-1. 34:2. (131-142). Online publication date: 1-Jun-2020.

    http://link.springer.com/10.1007/s13218-020-00634-1

  • Smith-Renner A, Fan R, Birchfield M, Wu T, Boyd-Graber J, Weld D and Findlater L. No Explainability without Accountability. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. (1-13).

    https://doi.org/10.1145/3313831.3376624

  • Kaur H, Nori H, Jenkins S, Caruana R, Wallach H and Wortman Vaughan J. Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. (1-14).

    https://doi.org/10.1145/3313831.3376219

  • Suh J, Ghorashi S, Ramos G, Chen N, Drucker S, Verwey J and Simard P. (2019). AnchorViz. ACM Transactions on Interactive Intelligent Systems. 10:1. (1-38). Online publication date: 31-Mar-2020.

    https://doi.org/10.1145/3241379

  • Wenskovitch J, Dowling M and North C. With respect to what?. Proceedings of the 25th International Conference on Intelligent User Interfaces. (177-188).

    https://doi.org/10.1145/3377325.3377516

  • Wall E, Ghorashi S and Ramos G. Using Expert Patterns in Assisted Interactive Machine Learning: A Study in Machine Teaching. Human-Computer Interaction – INTERACT 2019. (578-599).

    https://doi.org/10.1007/978-3-030-29387-1_34

  • Wu T, Weld D and Heer J. (2019). Local Decision Pitfalls in Interactive Machine Learning. ACM Transactions on Computer-Human Interaction. 26:4. (1-27). Online publication date: 31-Aug-2019.

    https://doi.org/10.1145/3319616

  • Celemin C and Ruiz-Del-Solar J. (2019). An Interactive Framework for Learning Continuous Actions Policies Based on Corrective Feedback. Journal of Intelligent and Robotic Systems. 95:1. (77-97). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s10846-018-0839-z

  • Law M, Jeong J, Kwatra A, Jung M and Hoffman G. Negotiating the Creative Space in Human-Robot Collaborative Design. Proceedings of the 2019 on Designing Interactive Systems Conference. (645-657).

    https://doi.org/10.1145/3322276.3322343

  • Cai C, Reif E, Hegde N, Hipp J, Kim B, Smilkov D, Wattenberg M, Viegas F, Corrado G, Stumpe M and Terry M. Human-Centered Tools for Coping with Imperfect Algorithms During Medical Decision-Making. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. (1-14).

    https://doi.org/10.1145/3290605.3300234

  • Al-Asmari H and Saleh M. (2019). A Conceptual Framework for Measuring Personal Privacy Risks in Facebook Online Social Network 2019 International Conference on Computer and Information Sciences (ICCIS). 10.1109/ICCISci.2019.8716477. 978-1-5386-8125-1. (1-6).

    https://ieeexplore.ieee.org/document/8716477/

  • Arendt D, Saldanha E, Wesslen R, Volkova S and Dou W. Towards rapid interactive machine learning. Proceedings of the 24th International Conference on Intelligent User Interfaces. (591-602).

    https://doi.org/10.1145/3301275.3302280

  • Bartel J and Dewan P. (2018). Towards Evolutionary Named Group Recommendations. Computer Supported Cooperative Work. 27:3-6. (983-1018). Online publication date: 1-Dec-2018.

    https://doi.org/10.1007/s10606-018-9321-5

  • Baeth M and Aktas M. (2018). An approach to custom privacy policy violation detection problems using big social provenance data. Concurrency and Computation: Practice and Experience. 10.1002/cpe.4690. 30:21. Online publication date: 10-Nov-2018.

    https://onlinelibrary.wiley.com/doi/10.1002/cpe.4690

  • Cao F, Scroggins D, Thomas L and Brown E. (2018). A Human-in-the-Loop Software Platform 2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI). 10.1109/MLUI52768.2018.10075650. 978-1-6654-4063-9. (1-11).

    https://ieeexplore.ieee.org/document/10075650/

  • Brown E, Yarlagadda S, Cook K, Chang R and Endert A. (2018). ModelSpace: Visualizing the Trails of Data Models in Visual Analytics Systems 2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI). 10.1109/MLUI52768.2018.10075649. 978-1-6654-4063-9. (1-11).

    https://ieeexplore.ieee.org/document/10075649/

  • Dowling M, Wenskovitch J, Hauck P, Binford A, Polys N and North C. (2018). A Bidirectional Pipeline for Semantic Interaction 2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI). 10.1109/MLUI52768.2018.10075562. 978-1-6654-4063-9. (1-11).

    https://ieeexplore.ieee.org/document/10075562/

  • Arendt D, Franklin L, Yang F, Brisbois B and LaMothe R. (2018). Crush Your Data with ViC 2 ES Then CHISSL Away 2018 IEEE Symposium on Visualization for Cyber Security (VizSec). 10.1109/VIZSEC.2018.8709212. 978-1-5386-8194-7. (1-8).

    https://ieeexplore.ieee.org/document/8709212/

  • L. Fogues R, Such J, Espinosa A, Garcia-Fornes A and Xia F. (2018). Tie and tag: A study of tie strength and tags for photo sharing. PLOS ONE. 10.1371/journal.pone.0202540. 13:8. (e0202540).

    http://dx.plos.org/10.1371/journal.pone.0202540

  • Dudley J and Kristensson P. (2018). A Review of User Interface Design for Interactive Machine Learning. ACM Transactions on Interactive Intelligent Systems. 8:2. (1-37). Online publication date: 30-Jun-2018.

    https://doi.org/10.1145/3185517

  • Datta S and Adar E. (2018). CommunityDiff. ACM Transactions on Knowledge Discovery from Data. 12:1. (1-34). Online publication date: 28-Feb-2018.

    https://doi.org/10.1145/3047009

  • Yang M, Hsu W and Kallumadi S. (2018). Predictive Analytics of Social Networks. Social Media Marketing. 10.4018/978-1-5225-5637-4.ch042. (823-862).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5637-4.ch042

  • Cottam J, Blaha L, Cook K and Whiting M. (2018). Human Machine Interactions: Velocity Considerations. Augmented Cognition: Users and Contexts. 10.1007/978-3-319-91467-1_4. (43-57).

    https://link.springer.com/10.1007/978-3-319-91467-1_4

  • Boukhelifa N, Bezerianos A and Lutton E. (2018). Evaluation of Interactive Machine Learning Systems. Human and Machine Learning. 10.1007/978-3-319-90403-0_17. (341-360).

    http://link.springer.com/10.1007/978-3-319-90403-0_17

  • Graham A, Liang Y, Gruenwald L and Grant C. (2017). [Research paper] formalizing interruptible algorithms for human over-the-loop analytics 2017 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2017.8258469. 978-1-5386-2715-0. (4378-4383).

    http://ieeexplore.ieee.org/document/8258469/

  • Cottam J, Blaha L, Zarzhitsky D, Thomas M and Skomski E. (2017). Crossing the Streams: Fuzz testing with user input 2017 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2017.8258466. 978-1-5386-2715-0. (4362-4371).

    http://ieeexplore.ieee.org/document/8258466/

  • Misra G and Such J. PACMAN: Personal Agent for Access Control in Social Media. IEEE Internet Computing. 10.1109/MIC.2017.4180831. 21:6. (18-26).

    http://ieeexplore.ieee.org/document/8114620/

  • Misra G and Such J. REACT. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. (421-426).

    https://doi.org/10.1145/3110025.3110073

  • Kim S, Tasse D and Dey A. (2017). Making Machine-Learning Applications for Time-Series Sensor Data Graphical and Interactive. ACM Transactions on Interactive Intelligent Systems. 7:2. (1-30). Online publication date: 29-Jul-2017.

    https://doi.org/10.1145/2983924

  • Tamagnini P, Krause J, Dasgupta A and Bertini E. Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations. Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. (1-6).

    https://doi.org/10.1145/3077257.3077260

  • Sun Y, Lank E and Terry M. Label-and-Learn. Proceedings of the 22nd International Conference on Intelligent User Interfaces. (523-534).

    https://doi.org/10.1145/3025171.3025208

  • Merritt D, Jones J, Ackerman M and Lasecki W. Kurator. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. (1835-1849).

    https://doi.org/10.1145/2998181.2998358

  • Arendt D, Komurlu C and Blaha L. (2017). CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning. Augmented Cognition. Neurocognition and Machine Learning. 10.1007/978-3-319-58628-1_33. (429-448).

    http://link.springer.com/10.1007/978-3-319-58628-1_33

  • Nair-Benrekia N, Kuntz P and Meyer F. (2017). Combining Dimensionality Reduction with Random Forests for Multi-label Classification Under Interactivity Constraints. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-57529-2_64. (828-839).

    https://link.springer.com/10.1007/978-3-319-57529-2_64

  • Lin K and Zhou J. (2016). Interactive Multi-task Relationship Learning 2016 IEEE 16th International Conference on Data Mining (ICDM). 10.1109/ICDM.2016.0035. 978-1-5090-5473-2. (241-250).

    http://ieeexplore.ieee.org/document/7837848/

  • Guo X, Yu Q, Li R, Alm C, Calvelli C, Shi P and Haake A. (2016). Intelligent medical image grouping through interactive learning. International Journal of Data Science and Analytics. 10.1007/s41060-016-0021-2. 2:3-4. (95-105). Online publication date: 1-Dec-2016.

    http://link.springer.com/10.1007/s41060-016-0021-2

  • Molin J, Woźniak P, Lundström C, Treanor D and Fjeld M. Understanding Design for Automated Image Analysis in Digital Pathology. Proceedings of the 9th Nordic Conference on Human-Computer Interaction. (1-10).

    https://doi.org/10.1145/2971485.2971561

  • Endert A. (2016). Semantic Interaction for Visual Analytics: Inferring Analytical Reasoning for Model Steering. Synthesis Lectures on Visualization. 10.2200/S00730ED1V01Y201608VIS007. 4:2. (1-99). Online publication date: 13-Sep-2016.

    http://www.morganclaypool.com/doi/10.2200/S00730ED1V01Y201608VIS007

  • Misra G, Such J and Balogun H. Non-sharing communities?. Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (49-56).

    /doi/10.5555/3192424.3192434

  • Misra G, Such J and Balogun H. (2016). IMPROVE - Identifying Minimal PROfile VEctors for Similarity Based Access Control 2016 IEEE Trustcom/BigDataSE/I​SPA. 10.1109/TrustCom.2016.0150. 978-1-5090-3205-1. (868-875).

    http://ieeexplore.ieee.org/document/7847033/

  • Misra G, Such J and Balogun H. (2016). Non-sharing communities? An empirical study of community detection for access control decisions 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 10.1109/ASONAM.2016.7752212. 978-1-5090-2846-7. (49-56).

    http://ieeexplore.ieee.org/document/7752212/

  • Krause J, Perer A and Ng K. Interacting with Predictions. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. (5686-5697).

    https://doi.org/10.1145/2858036.2858529

  • Gillies M, Fiebrink R, Tanaka A, Garcia J, Bevilacqua F, Heloir A, Nunnari F, Mackay W, Amershi S, Lee B, d'Alessandro N, Tilmanne J, Kulesza T and Caramiaux B. Human-Centred Machine Learning. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. (3558-3565).

    https://doi.org/10.1145/2851581.2856492

  • Zhao V, Moh M and Moh T. (2016). Contextual-Aware Hybrid Recommender System for Mixed Cold-Start Problems in Privacy Protection 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). 10.1109/BigDataSecurity-HPSC-IDS.2016.54. 978-1-5090-2403-2. (400-405).

    http://ieeexplore.ieee.org/document/7502323/

  • Yang M, Hsu W and Kallumadi S. (2016). Predictive Analytics of Social Networks. Business Intelligence. 10.4018/978-1-4666-9562-7.ch056. (1080-1116).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-9562-7.ch056

  • Reinhardt D, Engelmann F and Hollick M. Can I Help You Setting Your Privacy? A Survey-based Exploration of Users' Attitudes towards Privacy Suggestions. Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia. (347-356).

    https://doi.org/10.1145/2837126.2837130

  • Ziegeldorf J, Henze M, Hummen R and Wehrle K. Comparison-Based Privacy. Revised Selected Papers of the 10th International Workshop on Data Privacy Management, and Security Assurance - Volume 9481. (226-234).

    https://doi.org/10.1007/978-3-319-29883-2_15

  • Vidyalakshmi B, Wong R and Chi C. Privacy Scoring of Social Network Users as a Service. Proceedings of the 2015 IEEE International Conference on Services Computing. (218-225).

    https://doi.org/10.1109/SCC.2015.38

  • Wu Z, Huang I, Zheng X, Bartel J, Vitkus A and Dewan P. A test-bed for facebook friend-list recommendations. Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems. (222-225).

    https://doi.org/10.1145/2774225.2775436

  • Huang Z, Zhang J and Zhang B. (2015). Information Recommendation Between User Groups in Social Networks. Arabian Journal for Science and Engineering. 10.1007/s13369-015-1615-z. 40:5. (1443-1453). Online publication date: 1-May-2015.

    http://link.springer.com/10.1007/s13369-015-1615-z

  • Edge D, Gulwani S, Milic-Frayling N, Raza M, Adhitya Saputra R, Wang C and Yatani K. Mixed-Initiative Approaches to Global Editing in Slideware. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. (3503-3512).

    https://doi.org/10.1145/2702123.2702551

  • NAIR-BENREKIA N, Kuntz P and Meyer F. (2015). Selecting a Multi-Label Classification Method for an Interactive System. Data Science, Learning by Latent Structures, and Knowledge Discovery. 10.1007/978-3-662-44983-7_14. (157-167).

    https://link.springer.com/10.1007/978-3-662-44983-7_14

  • Jeon J, Shafieezadeh A and DesRoches R. (2014). Statistical models for shear strength of RC beam‐column joints using machine‐learning techniques. Earthquake Engineering & Structural Dynamics. 10.1002/eqe.2437. 43:14. (2075-2095). Online publication date: 1-Nov-2014.

    https://onlinelibrary.wiley.com/doi/10.1002/eqe.2437

  • Adar E, Dontcheva M and Laput G. CommandSpace. Proceedings of the 27th annual ACM symposium on User interface software and technology. (167-176).

    https://doi.org/10.1145/2642918.2647395

  • Mondal M, Liu Y, Viswanath B, Gummadi K and Mislove A. Understanding and specifying social access control lists. Proceedings of the Tenth USENIX Conference on Usable Privacy and Security. (271-283).

    /doi/10.5555/3235838.3235863

  • Vidyalakshmi B, Wong R, Ghanavati M and Chi C. Privacy as a Service in Social Network Communications. Proceedings of the 2014 IEEE International Conference on Services Computing. (456-463).

    https://doi.org/10.1109/SCC.2014.67

  • Eslami M, Aleyasen A, Zilouchian Moghaddam R and Karahalios K. Evaluation of automated friend grouping in online social networks. CHI '14 Extended Abstracts on Human Factors in Computing Systems. (2119-2124).

    https://doi.org/10.1145/2559206.2581322

  • Yue Y, Wang C, El-Arini K and Guestrin C. Personalized collaborative clustering. Proceedings of the 23rd international conference on World wide web. (75-84).

    https://doi.org/10.1145/2566486.2567991

  • Groce A, Kulesza T, Zhang C, Shamasunder S, Burnett M, Wong W, Stumpf S, Das S, Shinsel A, Bice F and McIntosh K. (2014). You Are the Only Possible Oracle. IEEE Transactions on Software Engineering. 40:3. (307-323). Online publication date: 1-Mar-2014.

    https://doi.org/10.1109/TSE.2013.59

  • Yang M, Hsu W and Kallumadi S. (2014). Predictive Analytics of Social Networks. Emerging Methods in Predictive Analytics. 10.4018/978-1-4666-5063-3.ch013. (297-333).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-5063-3.ch013

  • Eslami M, Aleyasen A, Moghaddam R and Karahalios K. (2014). Friend Grouping Algorithms for Online Social Networks: Preference, Bias, and Implications. Social Informatics. 10.1007/978-3-319-13734-6_3. (34-49).

    http://link.springer.com/10.1007/978-3-319-13734-6_3

  • De S and Dehuri S. (2014). Machine Learning for Auspicious Social Network Mining. Social Networking. 10.1007/978-3-319-05164-2_3. (45-83).

    https://link.springer.com/10.1007/978-3-319-05164-2_3

  • Bartel J and Dewan P. Evolving friend lists in social networks. Proceedings of the 7th ACM conference on Recommender systems. (435-438).

    https://doi.org/10.1145/2507157.2507194

  • Sleeper M, Balebako R, Das S, McConahy A, Wiese J and Cranor L. The post that wasn't. Proceedings of the 2013 conference on Computer supported cooperative work. (793-802).

    https://doi.org/10.1145/2441776.2441865

  • Hu M, Yang H, Zhou M, Gou L, Li Y and Haber E. (2013). OpinionBlocks: A Crowd-Powered, Self-improving Interactive Visual Analytic System for Understanding Opinion Text. Human-Computer Interaction – INTERACT 2013. 10.1007/978-3-642-40480-1_8. (116-134).

    http://link.springer.com/10.1007/978-3-642-40480-1_8

  • Savage S, Forbes A, Savage R, Höllerer T and Chávez N. Directed social queries with transparent user models. Adjunct proceedings of the 25th annual ACM symposium on User interface software and technology. (59-60).

    https://doi.org/10.1145/2380296.2380321

  • Mazzia A, LeFevre K and Adar E. The PViz comprehension tool for social network privacy settings. Proceedings of the Eighth Symposium on Usable Privacy and Security. (1-12).

    https://doi.org/10.1145/2335356.2335374