• Zaman N and Jana A. (2024). Automated recommendation model using ordinal probit regression factorization machines. International Journal of Data Science and Analytics. 10.1007/s41060-024-00623-9.

    https://link.springer.com/10.1007/s41060-024-00623-9

  • Pérez-López D, Ortega F, González-Prieto Á and Dueñas-Lerín J. (2024). Incorporating Recklessness to Collaborative Filtering based Recommender Systems. Information Sciences. 10.1016/j.ins.2024.121131. (121131). Online publication date: 1-Jul-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0020025524010454

  • Takezaki S and Uchida S. (2024). An Ordinal Diffusion Model for Generating Medical Images with Different Severity Levels 2024 IEEE International Symposium on Biomedical Imaging (ISBI). 10.1109/ISBI56570.2024.10635504. 979-8-3503-1333-8. (1-5).

    https://ieeexplore.ieee.org/document/10635504/

  • Kar P, Roy M and Datta S. (2024). Learning How to Rank and Collecting User Behavior. Recommender Systems: Algorithms and their Applications. 10.1007/978-981-97-0538-2_5. (39-54).

    https://link.springer.com/10.1007/978-981-97-0538-2_5

  • Fang S, Yi Z, Mi T, Zhou Z, Ye C, Shang W, Xu T and Wu X. TactONet: Tactile Ordinal Network Based on Unimodal Probability for Object Hardness Classification. IEEE Transactions on Automation Science and Engineering. 10.1109/TASE.2022.3200073. 20:4. (2784-2794).

    https://ieeexplore.ieee.org/document/9866706/

  • Pipergias Analytis P and Hager P. Collaborative filtering algorithms are prone to mainstream-taste bias. Proceedings of the 17th ACM Conference on Recommender Systems. (750-756).

    https://doi.org/10.1145/3604915.3608825

  • Knyazev N and Oosterhuis H. A Lightweight Method for Modeling Confidence in Recommendations with Learned Beta Distributions. Proceedings of the 17th ACM Conference on Recommender Systems. (306-317).

    https://doi.org/10.1145/3604915.3608788

  • Coscrato V and Bridge D. (2023). Estimating and Evaluating the Uncertainty of Rating Predictions and Top-n Recommendations in Recommender Systems. ACM Transactions on Recommender Systems. 1:2. (1-34). Online publication date: 30-Jun-2023.

    https://doi.org/10.1145/3584021

  • Pujahari A and Sisodia D. (2023). Ordinal Consistency based Matrix Factorization model for Exploiting Side Information in Collaborative Filtering. Information Sciences. 10.1016/j.ins.2023.119258. (119258). Online publication date: 1-Jun-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0020025523008435

  • Islam M, Wei D, Schieber B and Roy S. (2022). Satisfying complex top-k fairness constraints by preference substitutions. Proceedings of the VLDB Endowment. 16:2. (317-329). Online publication date: 1-Oct-2022.

    https://doi.org/10.14778/3565816.3565832

  • Wang Y, Tanaka S, Yokoyama K, Wu H and Fang Y. Two-sided Rank Consistent Ordinal Regression for Interpretable Music Key Recommendation. Proceedings of the 2022 ACM SIGIR International Conference on Theory of Information Retrieval. (223-231).

    https://doi.org/10.1145/3539813.3545147

  • Anelli V, Di Noia T, Di Sciascio E, Ragone A and Trotta J. Semantic Interpretation of Top-N Recommendations. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.3010215. 34:5. (2416-2428).

    https://ieeexplore.ieee.org/document/9143460/

  • Anelli V, Deldjoo Y, Di Noia T, Ferrara A and Narducci F. (2022). User-controlled federated matrix factorization for recommender systems. Journal of Intelligent Information Systems. 10.1007/s10844-021-00688-z. 58:2. (287-309). Online publication date: 1-Apr-2022.

    https://link.springer.com/10.1007/s10844-021-00688-z

  • Albuquerque T, Cruz R and Cardoso J. (2022). Quasi-Unimodal Distributions for Ordinal Classification. Mathematics. 10.3390/math10060980. 10:6. (980).

    https://www.mdpi.com/2227-7390/10/6/980

  • Rrmoku K, Selimi B and Ahmedi L. (2022). Application of Trust in Recommender Systems—Utilizing Naive Bayes Classifier. Computation. 10.3390/computation10010006. 10:1. (6).

    https://www.mdpi.com/2079-3197/10/1/6

  • Zhou Z, Huang B, Zhang R, Yin M, Liu C, Liu Y, Yi Z and Wu X. Methods to Recognize Depth of Hard Inclusions in Soft Tissue Using Ordinal Classification for Robotic Palpation. IEEE Transactions on Instrumentation and Measurement. 10.1109/TIM.2022.3198765. 71. (1-12).

    https://ieeexplore.ieee.org/document/9856694/

  • Yin C, Chen Y and Zuo W. (2021). Evolutionary Social Poisson Factorizationfor Temporal Recommendation. International Journal of Computational Intelligence Systems. 10.1007/s44196-021-00022-z. 14:1. Online publication date: 1-Dec-2021.

    https://link.springer.com/10.1007/s44196-021-00022-z

  • Bernardis C and Cremonesi P. Eigenvalue Perturbation for Item-based Recommender Systems. Proceedings of the 15th ACM Conference on Recommender Systems. (656-660).

    https://doi.org/10.1145/3460231.3478862

  • Harada T and Alba E. (2020). Parallel Genetic Algorithms. ACM Computing Surveys. 53:4. (1-39). Online publication date: 31-Jul-2021.

    https://doi.org/10.1145/3400031

  • Pekar A, Mocnej J, Seah W and Zolotova I. (2020). Application Domain-Based Overview of IoT Network Traffic Characteristics. ACM Computing Surveys. 53:4. (1-33). Online publication date: 31-Jul-2021.

    https://doi.org/10.1145/3399669

  • Franco C, Hernández N and Núñez H. (2021). Enhancing Social Recommenders with Implicit Preferences and Fuzzy Confidence Functions. Modeling Decisions for Artificial Intelligence. 10.1007/978-3-030-85529-1_10. (118-130).

    https://link.springer.com/10.1007/978-3-030-85529-1_10

  • Anelli V, Deldjoo Y, Di Noia T, Ferrara A and Narducci F. (2021). FedeRank: User Controlled Feedback with Federated Recommender Systems. Advances in Information Retrieval. 10.1007/978-3-030-72113-8_3. (32-47).

    http://link.springer.com/10.1007/978-3-030-72113-8_3

  • Mahdavi Hosseini S. (2020). Learning framework with joint task optimization applied to consumer health applications with behavioral nudges 2020 IEEE International Conference on Big Data (Big Data). 10.1109/BigData50022.2020.9377938. 978-1-7281-6251-5. (5698-5699).

    https://ieeexplore.ieee.org/document/9377938/

  • Yang X and Wang B. (2020). Local ranking and global fusion for personalized recommendation. Applied Soft Computing. 96:C. Online publication date: 1-Nov-2020.

    https://doi.org/10.1016/j.asoc.2020.106636

  • Taherpour M, Jalali M and Shakeri H. (2020). ECAT: an Enhanced Confidence-aware Trust-based recommendation system 2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS). 10.1109/CFIS49607.2020.9238759. 978-1-7281-7301-6. (180-185).

    https://ieeexplore.ieee.org/document/9238759/

  • Ifada N, Sophan M, Fitriantama M and Wahyuni S. (2020). Collaborative Filtering Item Recommendation Methods based on Matrix Factorization and Clustering Approaches 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). 10.1109/EECCIS49483.2020.9263450. 978-1-7281-7109-8. (226-230).

    https://ieeexplore.ieee.org/document/9263450/

  • Gouvert O, Oberlin T and Févotte C. Ordinal non-negative matrix factorization for recommendation. Proceedings of the 37th International Conference on Machine Learning. (3680-3689).

    /doi/10.5555/3524938.3525283

  • Ifada N, Humaidi Z and Sophan M. (2020). Application of Latent Factor Model on a Restaurant Menu Recommendation System. Journal of Physics: Conference Series. 10.1088/1742-6596/1569/2/022062. 1569. (022062). Online publication date: 1-Jul-2020.

    https://iopscience.iop.org/article/10.1088/1742-6596/1569/2/022062

  • Kumar B and Bala P. (2017). Cosine based latent factor model for ranking the recommendation. Operational Research. 10.1007/s12351-017-0325-6. 20:1. (297-317). Online publication date: 1-Mar-2020.

    http://link.springer.com/10.1007/s12351-017-0325-6

  • Yu R, Liu Q, Ye Y, Cheng M, Chen E and Ma J. Collaborative List-and-Pairwise Filtering from Implicit Feedback. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.3016732. (1-1).

    https://ieeexplore.ieee.org/document/9169842/

  • Ifada N, Alim D and Sophan M. NMF-based DCG Optimization for Collaborative Ranking on Recommendation Systems. Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence. (7-11).

    https://doi.org/10.1145/3366750.3366753

  • Ganzfried S and Yusuf F. (2019). Optimal Number of Choices in Rating Contexts. Big Data and Cognitive Computing. 10.3390/bdcc3030048. 3:3. (48).

    https://www.mdpi.com/2504-2289/3/3/48

  • Bernardis C, Ferrari Dacrema M and Cremonesi P. Estimating Confidence of Individual User Predictions in Item-based Recommender Systems. Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization. (149-156).

    https://doi.org/10.1145/3320435.3320453

  • Rahangdale A and Raut S. (2019). Machine Learning Methods for Ranking. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S021819401930001X. 29:06. (729-761). Online publication date: 1-Jun-2019.

    https://www.worldscientific.com/doi/abs/10.1142/S021819401930001X

  • Jasberg K and Sizov S. (2019). Human uncertainty in explicit user feedback and its impact on the comparative evaluations of accurate prediction and personalisation. Behaviour & Information Technology. 10.1080/0144929X.2019.1604804. (1-34).

    https://www.tandfonline.com/doi/full/10.1080/0144929X.2019.1604804

  • Niu K, Zhao X, Li F, Li N, Peng X and Chen W. UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty. IEEE Access. 10.1109/ACCESS.2019.2939945. 7. (145426-145434).

    https://ieeexplore.ieee.org/document/8826263/

  • Jiang M, Fang Y, Xie H, Chong J and Meng M. (2019). User click prediction for personalized job recommendation. World Wide Web. 22:1. (325-345). Online publication date: 1-Jan-2019.

    https://doi.org/10.1007/s11280-018-0568-z

  • Liu X, Zou Y, Song Y, Yang C, You J and Kumar B. (2019). Ordinal Regression with Neuron Stick-Breaking for Medical Diagnosis. Computer Vision – ECCV 2018 Workshops. 10.1007/978-3-030-11024-6_23. (335-344).

    https://link.springer.com/10.1007/978-3-030-11024-6_23

  • Linero A, Bradley J and Desai A. Multi-rubric models for ordinal spatial data with application to online ratings data. The Annals of Applied Statistics. 10.1214/18-AOAS1143. 12:4.

    https://projecteuclid.org\journals\annals-of-applied-statistics\volume-12\issue-4\Multi-rubric-models-for-ordinal-spatial-data-with-application-to\10.1214/18-AOAS1143.full

  • Hu J and Li P. Collaborative Multi-objective Ranking. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (1363-1372).

    https://doi.org/10.1145/3269206.3271785

  • Hidasi B and Karatzoglou A. Recurrent Neural Networks with Top-k Gains for Session-based Recommendations. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (843-852).

    https://doi.org/10.1145/3269206.3271761

  • Ayyaz S, Qamar U, Nawaz R and Deng Y. (2018). HCF-CRS: A Hybrid Content based Fuzzy Conformal Recommender System for providing recommendations with confidence. PLOS ONE. 10.1371/journal.pone.0204849. 13:10. (e0204849).

    https://dx.plos.org/10.1371/journal.pone.0204849

  • Ackerman B, Wang C and Chen Y. (2018). A session‐specific opportunity cost model for rank‐oriented recommendation. Journal of the Association for Information Science and Technology. 10.1002/asi.24044. 69:10. (1259-1270). Online publication date: 1-Oct-2018.

    https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24044

  • Shu-Hui C, Wann-Yih W and Dennison J. (2018). Validation of EGameFlow. Computers in Entertainment. 16:3. (1-15). Online publication date: 12-Sep-2018.

    https://doi.org/10.1145/3238249

  • Braun A, Queiroz R, Lee W, Feijo B and Musse S. (2018). Persona. Computers in Entertainment . 16:3. (1-19). Online publication date: 12-Sep-2018.

    https://doi.org/10.1145/3236495

  • Zhu J, Han L, Gou Z and Yuan X. (2018). A fuzzy clustering‐based denoising model for evaluating uncertainty in collaborative filtering recommender systems. Journal of the Association for Information Science and Technology. 10.1002/asi.24036. 69:9. (1109-1121). Online publication date: 1-Sep-2018.

    https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24036

  • Bobadilla J, Gutirrez A, Ortega F and Zhu B. (2018). Reliability quality measures for recommender systems. Information Sciences: an International Journal. 442:C. (145-157). Online publication date: 1-May-2018.

    https://doi.org/10.1016/j.ins.2018.02.030

  • Bonab H and Can F. (2018). GOOWE. ACM Transactions on Knowledge Discovery from Data. 12:2. (1-33). Online publication date: 30-Apr-2018.

    https://doi.org/10.1145/3139240

  • Tang L, Chaudhuri S, Bagherjeiran A and Zhou L. Learning Large Scale Ordinal Ranking Model via Divide-and-Conquer Technique. Companion Proceedings of the The Web Conference 2018. (1901-1909).

    https://doi.org/10.1145/3184558.3191658

  • Perozzi B and Akoglu L. (2018). Discovering Communities and Anomalies in Attributed Graphs. ACM Transactions on Knowledge Discovery from Data. 12:2. (1-40). Online publication date: 13-Mar-2018.

    https://doi.org/10.1145/3139241

  • HU G, Dai X, Qiu F, Xia R, Li T, Huang S and Chen J. (2018). Collaborative Filtering with Topic and Social Latent Factors Incorporating Implicit Feedback. ACM Transactions on Knowledge Discovery from Data. 12:2. (1-30). Online publication date: 13-Mar-2018.

    https://doi.org/10.1145/3127873

  • Hu J and Li P. Collaborative Filtering via Additive Ordinal Regression. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. (243-251).

    https://doi.org/10.1145/3159652.3159723

  • Jasberg K and Sizov S. (2018). Neuroscientific User Models: The Source of Uncertain User Feedback and Potentials for Improving Web Personalisation. Web Information Systems Engineering – WISE 2018. 10.1007/978-3-030-02925-8_30. (422-437).

    https://link.springer.com/10.1007/978-3-030-02925-8_30

  • Beckham C and Pal C. Unimodal probability distributions for deep ordinal classification. Proceedings of the 34th International Conference on Machine Learning - Volume 70. (411-419).

    /doi/10.5555/3305381.3305424

  • Hu J and Li P. Decoupled Collaborative Ranking. Proceedings of the 26th International Conference on World Wide Web. (1321-1329).

    https://doi.org/10.1145/3038912.3052685

  • Liu S, Li G, Tran T and Jiang Y. (2017). Preference Relation-based Markov Random Fields for Recommender Systems. Machine Language. 106:4. (523-546). Online publication date: 1-Apr-2017.

    https://doi.org/10.1007/s10994-016-5603-7

  • Idé T and Dhurandhar A. (2017). Supervised item response models for informative prediction. Knowledge and Information Systems. 51:1. (235-257). Online publication date: 1-Apr-2017.

    https://doi.org/10.1007/s10115-016-0976-2

  • Shi L, Wu B, Zheng J, Shi C and Li M. (2017). DSBPR: Dual Similarity Bayesian Personalized Ranking. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-57454-7_21. (266-277).

    https://link.springer.com/10.1007/978-3-319-57454-7_21

  • Wang S, Huang S, Liu T, Ma J, Chen Z and Veijalainen J. (2016). Ranking-Oriented Collaborative Filtering. ACM Transactions on Information Systems. 35:2. (1-28). Online publication date: 21-Dec-2016.

    https://doi.org/10.1145/2960408

  • Naamani-Dery L, Kalech M, Rokach L and Shapira B. (2016). Reducing preference elicitation in group decision making. Expert Systems with Applications: An International Journal. 61:C. (246-261). Online publication date: 1-Nov-2016.

    https://doi.org/10.1016/j.eswa.2016.05.041

  • Zhou X and Wu S. (2016). Rating LDA model for collaborative filtering. Knowledge-Based Systems. 110:C. (135-143). Online publication date: 15-Oct-2016.

    https://doi.org/10.1016/j.knosys.2016.07.020

  • Pan W and Chen L. (2016). Group Bayesian personalized ranking with rich interactions for one-class collaborative filtering. Neurocomputing. 207:C. (501-510). Online publication date: 26-Sep-2016.

    https://doi.org/10.1016/j.neucom.2016.05.019

  • Dai H, Wang Y, Trivedi R and Song L. Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. (29-34).

    https://doi.org/10.1145/2988450.2988451

  • Grolman E, Bar A, Shapira B, Rokach L and Dayan A. (2016). Utilizing transfer learning for in-domain collaborative filtering. Knowledge-Based Systems. 107:C. (70-82). Online publication date: 1-Sep-2016.

    https://doi.org/10.1016/j.knosys.2016.05.057

  • Himabindu T, Padmanabhan V, Pujari A and Sattar A. Prediction with confidence in item based collaborative filtering. Proceedings of the 14th Pacific Rim International Conference on Trends in Artificial Intelligence. (125-138).

    https://doi.org/10.1007/978-3-319-42911-3_11

  • Saia R, Boratto L and Carta S. (2016). Exploiting the Evaluation Frequency of the Items to Enhance the Recommendation Accuracy 2016 Global Summit on Computer & Information Technology (GSCIT). 10.1109/GSCIT.2016.15. 978-1-5090-2659-3. (108-113).

    http://ieeexplore.ieee.org/document/7976659/

  • Hug N, Prade H, Richard G and Serrurier M. (2016). Analogy in recommendation. Numerical vs. ordinal: A discussion 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZ-IEEE.2016.7737969. 978-1-5090-0626-7. (2220-2226).

    http://ieeexplore.ieee.org/document/7737969/

  • Guillou F, Gaudel R and Preux P. (2016). Large-Scale Bandit Recommender System. Machine Learning, Optimization, and Big Data. 10.1007/978-3-319-51469-7_17. (204-215).

    http://link.springer.com/10.1007/978-3-319-51469-7_17

  • Zhao X, Chen W, Yang F and Liu Z. (2016). Improving Diversity of User-Based Two-Step Recommendation Algorithm with Popularity Normalization. Database Systems for Advanced Applications. 10.1007/978-3-319-32055-7_2. (15-26).

    http://link.springer.com/10.1007/978-3-319-32055-7_2

  • Ide T and Dhurandhar A. Informative Prediction Based on Ordinal Questionnaire Data. Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM). (191-200).

    https://doi.org/10.1109/ICDM.2015.150

  • Liu R, Zhu M, Xiao L, Ruan L, Zhou Y, Duan W and Li D. (2015). Flow entries installation based on distributed SDN controller 2015 IEEE/CIC International Conference on Communications in China (ICCC). 10.1109/ICCChina.2015.7448745. 978-1-5090-0243-6. (1-6).

    http://ieeexplore.ieee.org/document/7448745/

  • Liu J, Wang Y and Tao H. (2015). An improved matrix factorization model under multidimensional context situation 2015 IEEE/CIC International Conference on Communications in China (ICCC). 10.1109/ICCChina.2015.7448725. 978-1-5090-0243-6. (1-6).

    http://ieeexplore.ieee.org/document/7448725/

  • Naamani-Dery L, Golan I, Kalech M and Rokach L. (2015). Preference Elicitation for Group Decisions Using the Borda Voting Rule. Group Decision and Negotiation. 10.1007/s10726-015-9427-9. 24:6. (1015-1033). Online publication date: 1-Nov-2015.

    http://link.springer.com/10.1007/s10726-015-9427-9

  • Charlin L, Ranganath R, McInerney J and Blei D. Dynamic Poisson Factorization. Proceedings of the 9th ACM Conference on Recommender Systems. (155-162).

    https://doi.org/10.1145/2792838.2800174

  • Nikolakopoulos A, Kouneli M and Garofalakis J. (2015). Hierarchical Itemspace Rank. Neurocomputing. 163:C. (126-136). Online publication date: 2-Sep-2015.

    https://doi.org/10.1016/j.neucom.2014.09.082

  • Huang S, Wang S, Liu T, Ma J, Chen Z and Veijalainen J. Listwise Collaborative Filtering. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (343-352).

    https://doi.org/10.1145/2766462.2767693

  • Zhao X, Niu Z, Chen W, Shi C, Niu K and Liu D. (2015). A hybrid approach of topic model and matrix factorization based on two-step recommendation framework. Journal of Intelligent Information Systems. 44:3. (335-353). Online publication date: 1-Jun-2015.

    https://doi.org/10.1007/s10844-014-0334-3

  • Christakopoulou K and Banerjee A. Collaborative Ranking with a Push at the Top. Proceedings of the 24th International Conference on World Wide Web. (205-215).

    https://doi.org/10.1145/2736277.2741678

  • Ribeiro M, Ziviani N, Moura E, Hata I, Lacerda A and Veloso A. (2014). Multiobjective Pareto-Efficient Approaches for Recommender Systems. ACM Transactions on Intelligent Systems and Technology. 5:4. (1-20). Online publication date: 23-Jan-2015.

    https://doi.org/10.1145/2629350

  • Klopp O, Lafond J, Moulines É and Salmon J. Adaptive multinomial matrix completion. Electronic Journal of Statistics. 10.1214/15-EJS1093. 9:2.

    https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-9/issue-2/Adaptive-multinomial-matrix-completion/10.1214/15-EJS1093.full

  • Chowdhury N, Cai X and Luo C. (2015). BoostMF: Boosted Matrix Factorisation for Collaborative Ranking. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-23525-7_1. (3-18).

    http://link.springer.com/10.1007/978-3-319-23525-7_1

  • Knijnenburg B and Willemsen M. (2015). Evaluating Recommender Systems with User Experiments. Recommender Systems Handbook. 10.1007/978-1-4899-7637-6_9. (309-352).

    https://link.springer.com/10.1007/978-1-4899-7637-6_9

  • Schedl M, Knees P, McFee B, Bogdanov D and Kaminskas M. (2015). Music Recommender Systems. Recommender Systems Handbook. 10.1007/978-1-4899-7637-6_13. (453-492).

    https://link.springer.com/10.1007/978-1-4899-7637-6_13

  • Liu J, Zhou T, Zhang Z, Yang Z, Liu C, Li W and Amaral L. (2014). Promoting Cold-Start Items in Recommender Systems. PLoS ONE. 10.1371/journal.pone.0113457. 9:12. (e113457).

    https://dx.plos.org/10.1371/journal.pone.0113457

  • Ling G, Lyu M and King I. Ratings meet reviews, a combined approach to recommend. Proceedings of the 8th ACM Conference on Recommender systems. (105-112).

    https://doi.org/10.1145/2645710.2645728

  • Lan A, Studer C and Baraniuk R. Time-varying learning and content analytics via sparse factor analysis. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (452-461).

    https://doi.org/10.1145/2623330.2623631

  • Manzato M, Domingues M and Rezende S. Optimizing Personalized Ranking in Recommender Systems with Metadata Awareness. Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 01. (191-197).

    https://doi.org/10.1109/WI-IAT.2014.33

  • Wu C, Mei T, Hsu W and Rui Y. Learning to personalize trending image search suggestion. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (727-736).

    https://doi.org/10.1145/2600428.2609569

  • Jawaheer G, Weller P and Kostkova P. (2014). Modeling User Preferences in Recommender Systems. ACM Transactions on Interactive Intelligent Systems. 4:2. (1-26). Online publication date: 1-Jul-2014.

    https://doi.org/10.1145/2512208

  • Nikolakopoulos A, Kalantzi M and Garofalakis J. On the Use of Lanczos Vectors for Efficient Latent Factor-Based Top-N Recommendation. Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14). (1-6).

    https://doi.org/10.1145/2611040.2611078

  • Lan A, Studer C and Baraniuk R. (2014). Matrix recovery from quantized and corrupted measurements ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 10.1109/ICASSP.2014.6854548. 978-1-4799-2893-4. (4973-4977).

    http://ieeexplore.ieee.org/document/6854548/

  • Do L and Lauw H. Modeling contextual agreement in preferences. Proceedings of the 23rd international conference on World wide web. (315-326).

    https://doi.org/10.1145/2566486.2568006

  • Naamani-Dery L, Golan I, Kalech M and Rokach L. (2014). Preference Elicitation for Group Decisions. Group Decision and Negotiation. A Process-Oriented View. 10.1007/978-3-319-07179-4_22. (193-200).

    http://link.springer.com/10.1007/978-3-319-07179-4_22

  • Mao X, Li Q, Xie H and Rao Y. (2014). Popularity Tendency Analysis of Ranking-Oriented Collaborative Filtering from the Perspective of Loss Function. Database Systems for Advanced Applications. 10.1007/978-3-319-05810-8_30. (451-465).

    http://link.springer.com/10.1007/978-3-319-05810-8_30

  • Mikeli A, Apostolou D and Despotis D. A Multi-criteria Recommendation Method for Interval Scaled Ratings. Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 03. (9-12).

    https://doi.org/10.1109/WI-IAT.2013.141

  • Thi-Tuoi Nguyen , Tri-Thanh Nguyen and Quang-Thuy Ha . (2013). Applying hidden topics in ranking social update streams on Twitter 2013 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future (RIVF). 10.1109/RIVF.2013.6719890. 978-1-4799-1350-3. (180-185).

    http://ieeexplore.ieee.org/document/6719890/

  • Tan C, Chi E, Huffaker D, Kossinets G and Smola A. Instant foodie. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1127-1136).

    https://doi.org/10.1145/2505515.2505712

  • Karatzoglou A, Baltrunas L and Shi Y. Learning to rank for recommender systems. Proceedings of the 7th ACM conference on Recommender systems. (493-494).

    https://doi.org/10.1145/2507157.2508063

  • Koyejo O, Acharyya S and Ghosh J. Retargeted matrix factorization for collaborative filtering. Proceedings of the 7th ACM conference on Recommender systems. (49-56).

    https://doi.org/10.1145/2507157.2507185

  • Pan Y, Cong F, Chen K and Yu Y. Diffusion-aware personalized social update recommendation. Proceedings of the 7th ACM conference on Recommender systems. (69-76).

    https://doi.org/10.1145/2507157.2507177

  • Mazurowski M. (2013). Estimating confidence of individual rating predictions in collaborative filtering recommender systems. Expert Systems with Applications: An International Journal. 40:10. (3847-3857). Online publication date: 1-Aug-2013.

    https://doi.org/10.1016/j.eswa.2012.12.102

  • Mikeli A, Sotiros D, Apostolou D and Despotis D. (2013). A multi-criteria recommender system incorporating intensity of preferences 2013 Fourth International Conference on Information, Intelligence, Systems and Applications (IISA). 10.1109/IISA.2013.6623719. 978-1-4799-0771-7. (1-6).

    http://ieeexplore.ieee.org/document/6623719/

  • Amatriain X. (2013). Mining large streams of user data for personalized recommendations. ACM SIGKDD Explorations Newsletter. 14:2. (37-48). Online publication date: 30-Apr-2013.

    https://doi.org/10.1145/2481244.2481250

  • Shapira B, Rokach L and Freilikhman S. (2012). Facebook single and cross domain data for recommendation systems. User Modeling and User-Adapted Interaction. 10.1007/s11257-012-9128-x. 23:2-3. (211-247). Online publication date: 1-Apr-2013.

    http://link.springer.com/10.1007/s11257-012-9128-x

  • Hong L, Doumith A and Davison B. Co-factorization machines. Proceedings of the sixth ACM international conference on Web search and data mining. (557-566).

    https://doi.org/10.1145/2433396.2433467

  • Fan C and Lin Z. (2013). Collaborative Ranking with Ranking-Based Neighborhood. Web Technologies and Applications. 10.1007/978-3-642-37401-2_74. (770-781).

    http://link.springer.com/10.1007/978-3-642-37401-2_74

  • Parra D and Sahebi S. (2013). Recommender Systems: Sources of Knowledge and Evaluation Metrics. Advanced Techniques in Web Intelligence-2. 10.1007/978-3-642-33326-2_7. (149-175).

    https://link.springer.com/10.1007/978-3-642-33326-2_7

  • Yang Z, Zhang Z and Zhou T. (2013). Anchoring bias in online voting. EPL (Europhysics Letters). 10.1209/0295-5075/100/68002. 100:6. (68002). Online publication date: 1-Dec-2012.

    http://stacks.iop.org/0295-5075/100/i=6/a=68002?key=crossref.bf53d9c322281a45fa5e10ca70bf70c8

  • Shi Y, Karatzoglou A, Baltrunas L, Larson M, Oliver N and Hanjalic A. CLiMF. Proceedings of the sixth ACM conference on Recommender systems. (139-146).

    https://doi.org/10.1145/2365952.2365981

  • Hong L, Bekkerman R, Adler J and Davison B. Learning to rank social update streams. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. (651-660).

    https://doi.org/10.1145/2348283.2348371

  • Stajano F. (2009). Foot-driven computing. SIGSPATIAL Special. 1:2. (28-32). Online publication date: 1-Jul-2009.

    https://doi.org/10.1145/1567253.1567259

  • Bertino E. (2009). Privacy-preserving techniques for location-based services. SIGSPATIAL Special. 1:2. (2-3). Online publication date: 1-Jul-2009.

    https://doi.org/10.1145/1567253.1567254

  • O'Neil E, O'Neil P and Weikum G. (1999). An optimality proof of the LRU-K page replacement algorithm. Journal of the ACM. 46:1. (92-112). Online publication date: 1-Jan-1999.

    https://doi.org/10.1145/300515.300518

  • Galil Z, Italiano G and Sarnak N. (1999). Fully dynamic planarity testing with applications. Journal of the ACM. 46:1. (28-91). Online publication date: 1-Jan-1999.

    https://doi.org/10.1145/300515.300517