• La Valle C and Tonelli-Cueto J. Some Lower Bounds on the Reach of an Algebraic Variety. Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation. (217-225).

    https://doi.org/10.1145/3666000.3669693

  • Becker R and Sagraloff M. (2024). Counting solutions of a polynomial system locally and exactly. Journal of Symbolic Computation. 120:C. Online publication date: 1-Jan-2024.

    https://doi.org/10.1016/j.jsc.2023.102222

  • Labbé J, Rote G and Ziegler G. (2018). Area Difference Bounds for Dissections of a Square into an Odd Number of Triangles. Experimental Mathematics. 10.1080/10586458.2018.1459961. 29:3. (253-275). Online publication date: 1-Sep-2020.

    https://www.tandfonline.com/doi/full/10.1080/10586458.2018.1459961

  • Mantzaflaris A, Mourrain B and Szanto A. Punctual Hilbert scheme and certified approximate singularities. Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation. (336-343).

    https://doi.org/10.1145/3373207.3404024

  • Bouzidi Y and Rouillier F. (2020). Symbolic Methods for Solving Algebraic Systems of Equations and Applications for Testing the Structural Stability. Algebraic and Symbolic Computation Methods in Dynamical Systems. 10.1007/978-3-030-38356-5_8. (203-237).

    http://link.springer.com/10.1007/978-3-030-38356-5_8

  • Mantzaflaris A, Schost E and Tsigaridas E. Sparse Rational Univariate Representation. Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation. (301-308).

    https://doi.org/10.1145/3087604.3087653

  • Consolini L and Locatelli M. (2017). On the complexity of quadratic programming with two quadratic constraints. Mathematical Programming: Series A and B. 164:1-2. (91-128). Online publication date: 1-Jul-2017.

    https://doi.org/10.1007/s10107-016-1073-8

  • Schirra S and Wilhelm M. (2017). On Interval Methods with Zero Rewriting and Exact Geometric Computation. Mathematical Aspects of Computer and Information Sciences. 10.1007/978-3-319-72453-9_15. (211-226).

    http://link.springer.com/10.1007/978-3-319-72453-9_15

  • Strzeboński A and Tsigaridas E. (2017). Univariate Real Root Isolation over a Single Logarithmic Extension of Real Algebraic Numbers. Applications of Computer Algebra. 10.1007/978-3-319-56932-1_27. (425-445).

    http://link.springer.com/10.1007/978-3-319-56932-1_27

  • Brand C and Sagraloff M. On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection. Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation. (151-158).

    https://doi.org/10.1145/2930889.2930934

  • Emiris I, Mantzaflaris A and Tsigaridas E. On the Bit Complexity of Solving Bilinear Polynomial Systems. Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation. (215-222).

    https://doi.org/10.1145/2930889.2930919

  • Melczer S and Salvy B. Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables. Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation. (333-340).

    https://doi.org/10.1145/2930889.2930913

  • Herman A and Tsigaridas E. Bounds for the Condition Number of Polynomials Systems with Integer Coefficients. Proceedings of the 17th International Workshop on Computer Algebra in Scientific Computing - Volume 9301. (210-219).

    https://doi.org/10.1007/978-3-319-24021-3_16

  • Jeronimo G and Perrucci D. (2014). A Probabilistic Symbolic Algorithm to Find the Minimum of a Polynomial Function on a Basic Closed Semialgebraic Set. Discrete & Computational Geometry. 52:2. (260-277). Online publication date: 1-Sep-2014.

    https://doi.org/10.1007/s00454-014-9619-0

  • Sagraloff M. A near-optimal algorithm for computing real roots of sparse polynomials. Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation. (359-366).

    https://doi.org/10.1145/2608628.2608632

  • Tsigaridas E. (2014). Algebraic Algorithms*. Computing Handbook, Third Edition. 10.1201/b16812-13. (1-30). Online publication date: 14-May-2014.

    http://www.crcnetbase.com/doi/abs/10.1201/b16812-13

  • Shen F, Wu W and Xia B. (2014). Real Root Isolation of Polynomial Equations Based on Hybrid Computation. Computer Mathematics. 10.1007/978-3-662-43799-5_26. (375-396).

    https://link.springer.com/10.1007/978-3-662-43799-5_26

  • Schirra S. A Note on Sekigawa's Zero Separation Bound. Proceedings of the 15th International Workshop on Computer Algebra in Scientific Computing - Volume 8136. (331-339).

    https://doi.org/10.1007/978-3-319-02297-0_27

  • McNamee J and Pan V. (2013). Nearly Optimal Universal Polynomial Factorization and Root-Finding. Numerical Methods for Roots of Polynomials - Part II. 10.1016/B978-0-444-52730-1.00009-6. (633-717).

    https://linkinghub.elsevier.com/retrieve/pii/B9780444527301000096

  • Li J, Cheng J and Tsigaridas E. Local generic position for root isolation of zero-dimensional triangular polynomial systems. Proceedings of the 14th international conference on Computer Algebra in Scientific Computing. (186-197).

    https://doi.org/10.1007/978-3-642-32973-9_16

  • Strzeboński A and Tsigaridas E. Univariate real root isolation in multiple extension fields. Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation. (343-350).

    https://doi.org/10.1145/2442829.2442878

  • Emeliyanenko P and Sagraloff M. On the complexity of solving a bivariate polynomial system. Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation. (154-161).

    https://doi.org/10.1145/2442829.2442854

  • Strzebonski A and Tsigaridas E. Univariate real root isolation in an extension field. Proceedings of the 36th international symposium on Symbolic and algebraic computation. (321-328).

    https://doi.org/10.1145/1993886.1993934

  • Hansen K, Koucky M, Lauritzen N, Miltersen P and Tsigaridas E. Exact algorithms for solving stochastic games. Proceedings of the forty-third annual ACM symposium on Theory of computing. (205-214).

    https://doi.org/10.1145/1993636.1993665

  • Mantzaflaris A, Mourrain B and Tsigaridas E. (2011). On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers. Theoretical Computer Science. 412:22. (2312-2330). Online publication date: 1-May-2011.

    https://doi.org/10.1016/j.tcs.2011.01.009

  • Jeronimo G and Perrucci D. (2010). On the minimum of a positive polynomial over the standard simplex. Journal of Symbolic Computation. 45:4. (434-442). Online publication date: 1-Apr-2010.

    https://doi.org/10.1016/j.jsc.2010.01.001