PDF
Discussiones
Mathematicae Graph Theory 22(2) (2002) 233-246
DOI: https://doi.org/10.7151/dmgt.1172
TREES WITH UNIQUE MINIMUM TOTAL DOMINATING SETS
Teresa W. Haynes
Department of Mathematics |
Michael A. Henning
Department of Mathematics |
Abstract
A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.Keywords: domination, total domination.
2000 Mathematics Subject Classification: 05C069.
References
[1] | G. Chartrand and L. Lesniak, Graphs & Digraphs, third edition (Chapman & Hall, London, 1996). |
[2] | E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. |
[3] | E. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in every minimum total dominating set of a tree, to appear in Discrete Math. |
[4] | O. Favaron, M.A. Henning, C.M. Mynhardt and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34 (2000) 9-19, doi: 10.1002/(SICI)1097-0118(200005)34:1<9::AID-JGT2>3.0.CO;2-O. |
[5] | G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55-63. |
[6] | G. Gunther, B. Hartnell and D. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Appl. Math. 46 (1993) 167-172, doi: 10.1016/0166-218X(93)90026-K. |
[7] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). |
[8] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). |
[9] | M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000) 21-45, doi: 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F. |
[10] | G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245-251, doi: 10.1016/0012-365X(85)90177-3. |
Received 10 February 2001
Revised 6 November 2001
Close