[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析

吕晏旻 闵富红

引用本文:
Citation:

基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析

吕晏旻, 闵富红

Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array

Lü Yan-Min, Min Fu-Hong
PDF
HTML
导出引用
  • 将含绝对值项的磁控忆阻器引入改进型蔡氏电路, 构建新型磁控忆阻混沌电路, 通过分岔图与Lyapunov指数谱创新性地观察到系统的对称分岔行为, 揭示系统双参数平面内运动状态分布的对称性. 同时, 基于忆阻电路参数-初值平面的系统运动分布图, 分析对称吸引域内系统的多稳态特性, 相图的绘制进一步证明电路多稳态现象的存在性. 此外, 应用现场可编程逻辑门阵列完成电路实验, 在数字示波器上捕捉实验结果, 证明所构磁控忆阻电路的物理可实现性.
    The lack of the relationship between flux and charge has been made up for by the memristor which is suitable to constructing chaotic circuits as a nonlinear element. Commonly, the memristor-based chaotic systems are constructed by introducing the model of memristor into various classical nonlinear circuits, and more special and abundant dynamic behaviors are existent in these memristive systems. With the deepening of research, several novel nonlinear phenomena of memristor circuits have been found, such as hidden attractors, self-excited attractors and anti-monotonic characteristic. Meanwhile, multistability of a memristor-based circuit explained by the coexistence of multiple attractors with different topological structures is a typical phenomenon in a nonlinear system, and it is also one of the hotspots in this field. In addition, the chaotic sequences generated by the memristive circuits are used as additional signals for information transmission or image encryption. Therefore, the study of modeling memristor systems and analyzing various nonlinear behaviors is of certain valuable. In this paper, a four-dimensional flux-controlled memeristive circuit is constructed by introducing an active memristor with absolute value into an improved Chua’s circuit, and the special dynamic behaviors are observed. Through the bifurcation diagrams and Lyapunov exponent spectra, the symmetric bifurcations are shown, and the symmetric system states in parameter mappings are found. Besides, the distribution maps of memristive circuit are used to analyze the multistability in a symmetrical attraction domain, and the corresponding phase diagrams are depicted to confirm the existence of multistability. Furthermore, the circuit experiments of the flux-controlled memeristive circuit are implemented by the field programmable gate array simulation, and the experimental results are obtained on a digital oscilloscope, which proves the physical implementability of the memristor-based system.
      通信作者: 闵富红, minfuhong@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871230)资助的课题.
      Corresponding author: Min Fu-Hong, minfuhong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871230).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507Google Scholar

    [2]

    林毅, 刘文波, 沈骞 2018 物理学报 67 230502Google Scholar

    Lin Y, Liu W B, Shen Q 2018 Acta Phys. Sin. 67 230502Google Scholar

    [3]

    Olumodeji O A, Gottardi M 2017 Integration 58 438Google Scholar

    [4]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661Google Scholar

    [5]

    Guo M, Gao Z H, Xue Y B, Dou G, Li Y X 2018 Nonlinear Dyn. 93 1681Google Scholar

    [6]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [7]

    Peng G Y, Min F H 2017 Nonlinear Dyn. 90 1607Google Scholar

    [8]

    Li C, Min F H, Li C B 2018 Nonlinear Dyn. 94 2785Google Scholar

    [9]

    Peng G, Min F 2018 Computer Electr. Eng. Article ID 86492 9

    [10]

    Feng W, He Y G, Li C L 2018 Complexity 2018 1

    [11]

    Abuelma'Atti M T, Khalifa Z J 2016 Int.J. Electr. Eng. 53 280Google Scholar

    [12]

    Bao B C, Li Q D, Wang N 2016 Chaos 26 043111Google Scholar

    [13]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230Google Scholar

    [14]

    Kengne J, Negou A N, Tchiotsop D 2017 Nonlinear Dyn. 27 1

    [15]

    Bao B C, Xu L, Wang N, Bao H, Xu Q, Chen M 2018 Int. J. Electr. Com. 94 26Google Scholar

    [16]

    王伟, 曾以成, 孙睿婷 2017 物理学报 66 040502Google Scholar

    Wang W, Zeng Y C, Sun R T 2017 Acta Phys. Sin. 66 040502Google Scholar

    [17]

    Min F H, Li C, Zhang L, Li C B 2019 Chin. J. Phys. 58 117Google Scholar

    [18]

    Feudel U, Kraut S 2008 Int. J. Bifurcat. Chaos 18 1607Google Scholar

    [19]

    Ngonghala C N, Feudel U 2011 Phys. Rev. E: Stat. Nonlinear Soft. Matter Phys. 83 056206Google Scholar

    [20]

    Bao H, Wang N, Bao B C, Chen M, Jin P P, Wang G Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 57 264Google Scholar

    [21]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [22]

    Da C, Rafael A, Eisencraf M 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 441Google Scholar

    [23]

    Yavuz O, Erdem E 2019 Opt. Laser Technol. 114 224Google Scholar

    [24]

    Njitacke Z T, Kengne J 2017 Chaos, Sol. Frac. 105 77Google Scholar

    [25]

    Li C B, Akgul A, Sprott J C, Lu H H C, Thio W J C 2018 Int. J. Circ. Theor. Appl. 46 2434Google Scholar

    [26]

    Li C B, Sprott J C, Liu Y J, Gu Z Y, Zhang J W 2018 Int. J. Bifurcat. Chaos 28 1850163Google Scholar

    [27]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 109

  • 图 1  电路模型 (a)磁控忆阻电路; (b)磁控忆阻等效电路

    Fig. 1.  Circuit schematic: (a) Flux-controlled memristor circuit; (b) equivalent Circuit of flux-controlled memristor.

    图 2  $y-z$平面上典型混沌吸引子的相图与Poincaré截面图 (a)相图; (b) Poincaré截面图

    Fig. 2.  Phase portrait and Poincaré map of typical chaotic attractor in $y-z$ plane: (a) Phase portrait; (b) Poincaré map

    图 3  随参数$\gamma $变化的分岔图与Lyapunov指数谱 (a)分岔图; (b)Lyapunov指数谱

    Fig. 3.  Bifurcation and Lyapunov exponent spectrum with parameter $\gamma $: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum

    图 4  随参数c变化的分岔图与Lyapunov指数谱 (a)分岔图; (b) Lyapunov指数谱

    Fig. 4.  Bifurcation and Lyapunov exponent spectrum with parameter $c$: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum.

    图 5  双参数吸引盆 (a)参数$\gamma -b$; (b)参数$c-b$; (c)参数$\gamma -\xi $; (d)参数$c-\xi $

    Fig. 5.  Parameter mappings: (a) Parameter $\gamma $ and $b$; (b) parameter $c$ and $b$; (c) parameter $\gamma $ and $\xi $; (d) parameter $c$ and $\xi $

    图 6  不同变量组合下的共存吸引盆 (a) $\gamma -x\left(0\right)$平面, 初始条件为$\left(x\left(0\right),0,0,0\right)$; (b)$c-x\left(0\right)$平面, 初始条件为$\left(x\left(0\right),0,0,0\right)$

    Fig. 6.  Attraction basins of coexistence in different planes: (a) $\gamma -x\left(0\right)$ plane, with initial value of $\left(x\left( 0 \right),0,0,0\right)$; (b) $c-x\left(0\right)$ plane, with initial value of $\left(x\left(0\right),0,0,0\right)$

    图 7  不同变量组合下系统状态分布图 (a) $\gamma -w(0)$平面, 初始条件为$( - {10^{ - 9}},0,0,w(0))$; (b)$c-w(0)$平面, 初始条件为$( - {10^{ - 9}},0,0,w(0))$; (c)$\gamma -w(0)$平面, 初始条件为$({10^{ - 9}},0,0,w(0))$; (d)$c-w(0)$平面, 初始条件为$({10^{ - 9}},0,0,w(0))$

    Fig. 7.  Attraction basins of coexistence in different planes: (a) $\gamma -w(0)$ plane, with initial value of $( - {10^{ - 9}},0,0,w(0))$; (b) $c-w(0)$ plane, with initial value of $( - {10^{ - 9}},0,0,w(0))$; (c) $\gamma -w(0)$ plane, with initial value of $({10^{ - 9}},0,0,w(0))$; (d) $c-w(0)$ plane, with initial value of $({10^{ - 9}},0,0,w(0))$

    图 8  参数$\gamma {\rm{ = 0}}{\rm{.74}}$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3; (b)左右共存混沌与左右共存周期1

    Fig. 8.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $\gamma {\rm{ = 0}}{\rm{.74}}$: (a) Coexisting attractors of period-3; (b) coexisting attractors of chaos and period-1

    图 9  参数$c = 1.274$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3; (b)左右共存混沌与左右共存周期1

    Fig. 9.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $c = 1.274$: (a) Coexisting attractors of period-3; (b) coexisting attractors of chaos and period-1.

    图 10  参数$\gamma {\rm{ = 0}}{\rm{.74}}$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3、左右共存周期1与稳定不动点; (b)左右共存混沌与左右共存周期2

    Fig. 10.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $\gamma {\rm{ = 0}}{\rm{.74}}$: (a) Coexisting attractors of period-3, period-1 and fixed point; (b) coexisting attractors of chaos and period-2

    图 11  参数$c = 1.274$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3与稳定不动点; (b)左右共存混沌与左右共存周期1

    Fig. 11.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $c = 1.274$: (a) Coexisting attractors of period-3 and fixed point; (b) coexisting attractors of chaos and period-1

    图 12  顶层模块控制流程图

    Fig. 12.  The flow chart of calling order

    图 13  FPGA实物连接图与实现结果 (a)实物连接图; (b)y-z平面相图; (c)y, z两项时序图

    Fig. 13.  The hardware connection diagram and the result of implementation: (a) The hardware connection diagram; (b) phase diagram in y-z plane; (c) timing diagram of the term y and z

    图 14  固定参数$c = 1.274$x-z平面内不同初值条件下的共存, Ch1 = 500 MV, Ch2 = 500 MV (a)初值为$\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, 左侧周期1; (b)初值为$\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.45}}} \right)$, 左侧周期3; (c)初值为$\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.9}}} \right)$, 左侧混沌; (d)初值为$\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, 右侧周期1; (e)初值为$\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.45}}} \right)$右侧周期3; (f)初值为$\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.9}}} \right)$, 右侧混沌

    Fig. 14.  The phase diagram of coexistence attractors with different initial conditions at $c = 1.274$ in x-z plane, Ch1 = 500 MV, Ch2 = 500 MV: (a) The initial value as $\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, left period-1; (b) the initial value as $\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.45}}} \right)$, left period-3; (c) the initial value as $\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.9}}} \right)$, left period-3; (d) the initial value as $\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, right chaos; (e) the initial value as $\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.45}}} \right)$, right period-3; (f) the initial value as $\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.9}}} \right)$, right chaos

    表 1  系统参数

    Table 1.  The valueof system parameters

    参数数值参数数值
    $a$1$\xi $0.12
    $b$3.5$\alpha $0.3
    $c$1$\beta $0.8
    $\gamma $0.86
    下载: 导出CSV

    表 2  参数$\gamma $, c变化时系统运动状态与对应的Lyapunov指数

    Table 2.  The dynamic behavior and Lyapunov exponent with parameter $\gamma $ and $c$

    参数$\gamma $运动状态Lyapunov指数
    $(0.6{\rm{6}},0.{\rm{704}})$稳定不动点$( -, -, -, - )$
    $(0.{\rm{704}},0.8{\rm{08}}) \cup (0.{\rm{829}},0.{\rm{845}})$周期运动$( + , -, -, - )$
    ${\rm{(0}}{\rm{.808,}}\,{\rm{0}}{\rm{.829)}} \cup {\rm{(0}}{\rm{.845,}}\,{\rm{0}}{\rm{.9)}}$复杂运动(混沌, 多周期)$( +,0, -, - )$
    参数c运动状态Lyapunov指数
    ${\rm{(0}}{\rm{.9,}}\,{\rm{1}}{\rm{.02)}} \cup {\rm{(1}}{\rm{.07,1}}{\rm{.13)}}$复杂运动(混沌, 多周期)$( +,0, -, - )$
    ${\rm{(1}}{\rm{.02,}}\,{\rm{1}}{\rm{.07)}} \cup {\rm{(1}}{\rm{.13,}}\,{\rm{1}}{\rm{.41)}}$周期运动$( + , -, -, - )$
    $({\rm{1}}{\rm{.41,1}}{\rm{.5}})$稳定不动点$( -, -, -, - )$
    下载: 导出CSV

    表 3  不同颜色所对应的系统运动状态

    Table 3.  Colors and the corresponding system states

    颜色 系统运动
    紫色稳定不动点
    蓝色周期1
    绿色周期2
    黄色周期3
    红色复杂运动(混沌, 多周期)
    下载: 导出CSV

    表 4  运动状态与色标的对应表

    Table 4.  Different colors and the corresponding dynamical state

    颜色浅蓝 绿色 黄色 红色 紫色
    共存类型左侧周期1左侧周期2左侧周期3左侧复杂运动(左侧多周期, 混沌)稳定不动点
    颜色深蓝 青色 草绿 橙色
    共存类型右侧周期1右侧周期2右侧周期3右侧复杂运动(右侧多周期, 混沌)
    下载: 导出CSV

    表 5  不同初值对应的共存多吸引子类型

    Table 5.  Coexisting multiple attractor with different initial condition

    参数吸引子类型初始条件
    $\gamma = 0.{\rm{74}}$左右共存点吸引子$\left( \pm {10^{ - 9}},0,0, \mp 0.{\rm{45}}\right)$
    左右共存周期1$\left( \pm 0.1,0,0,0\right)$,$\left( \pm {10^{ - 9}},0,0, \pm {\rm{0}}{\rm{.45}}\right)$
    左右共存周期2, 左右共存周期3$\left( \pm {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}},0,0, \pm {\rm{0}}{\rm{.45}}\right)$, $ \left( \pm 0.{\rm{4}},0,0,0\right) $, $\left( \pm {10^{ - 9}},0,0 \pm 0.{\rm{5}}\right)$
    左右共存混沌$\left( \pm 0.{\rm{8}},0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0, \pm 0.9\right)$
    $c = 1.274$左右共存点吸引子$\left( \pm {10^{ - 9}},0,0, \mp 0.{\rm{45}}\right)$
    左右共存周期1$\left( \pm 0.1,0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0,0\right)$
    左右共存周期3$\left( \pm 0.45,0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0 \pm 0.4{\rm{5}}\right)$
    左右共存混沌$\left( \pm 0.{\rm{8}},0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0, \pm 0.9\right)$
    下载: 导出CSV
  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507Google Scholar

    [2]

    林毅, 刘文波, 沈骞 2018 物理学报 67 230502Google Scholar

    Lin Y, Liu W B, Shen Q 2018 Acta Phys. Sin. 67 230502Google Scholar

    [3]

    Olumodeji O A, Gottardi M 2017 Integration 58 438Google Scholar

    [4]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661Google Scholar

    [5]

    Guo M, Gao Z H, Xue Y B, Dou G, Li Y X 2018 Nonlinear Dyn. 93 1681Google Scholar

    [6]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [7]

    Peng G Y, Min F H 2017 Nonlinear Dyn. 90 1607Google Scholar

    [8]

    Li C, Min F H, Li C B 2018 Nonlinear Dyn. 94 2785Google Scholar

    [9]

    Peng G, Min F 2018 Computer Electr. Eng. Article ID 86492 9

    [10]

    Feng W, He Y G, Li C L 2018 Complexity 2018 1

    [11]

    Abuelma'Atti M T, Khalifa Z J 2016 Int.J. Electr. Eng. 53 280Google Scholar

    [12]

    Bao B C, Li Q D, Wang N 2016 Chaos 26 043111Google Scholar

    [13]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230Google Scholar

    [14]

    Kengne J, Negou A N, Tchiotsop D 2017 Nonlinear Dyn. 27 1

    [15]

    Bao B C, Xu L, Wang N, Bao H, Xu Q, Chen M 2018 Int. J. Electr. Com. 94 26Google Scholar

    [16]

    王伟, 曾以成, 孙睿婷 2017 物理学报 66 040502Google Scholar

    Wang W, Zeng Y C, Sun R T 2017 Acta Phys. Sin. 66 040502Google Scholar

    [17]

    Min F H, Li C, Zhang L, Li C B 2019 Chin. J. Phys. 58 117Google Scholar

    [18]

    Feudel U, Kraut S 2008 Int. J. Bifurcat. Chaos 18 1607Google Scholar

    [19]

    Ngonghala C N, Feudel U 2011 Phys. Rev. E: Stat. Nonlinear Soft. Matter Phys. 83 056206Google Scholar

    [20]

    Bao H, Wang N, Bao B C, Chen M, Jin P P, Wang G Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 57 264Google Scholar

    [21]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [22]

    Da C, Rafael A, Eisencraf M 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 441Google Scholar

    [23]

    Yavuz O, Erdem E 2019 Opt. Laser Technol. 114 224Google Scholar

    [24]

    Njitacke Z T, Kengne J 2017 Chaos, Sol. Frac. 105 77Google Scholar

    [25]

    Li C B, Akgul A, Sprott J C, Lu H H C, Thio W J C 2018 Int. J. Circ. Theor. Appl. 46 2434Google Scholar

    [26]

    Li C B, Sprott J C, Liu Y J, Gu Z Y, Zhang J W 2018 Int. J. Bifurcat. Chaos 28 1850163Google Scholar

    [27]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 109

  • [1] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [2] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [3] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [4] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [5] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [6] 王颜, 杨玖, 王丽丹, 段书凯. 基于串并联磁控忆阻器的耦合行为研究. 物理学报, 2015, 64(23): 237303. doi: 10.7498/aps.64.237303
    [7] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [8] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [9] 朱金荣, 香妹, 胡经国. 铁磁/反铁磁双层膜系统中的磁畴动力学行为. 物理学报, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [10] 潘晶, 齐娜, 薛兵兵, 丁群. 基于现场可编程门阵列的手机短信息混沌加密系统设计方案及硬件实现. 物理学报, 2012, 61(18): 180504. doi: 10.7498/aps.61.180504
    [11] 高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元. 静态存储器型现场可编程门阵列总剂量辐射损伤效应研究. 物理学报, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [12] 周武杰, 禹思敏. 基于现场可编程门阵列技术的混沌数字通信系统——设计与实现. 物理学报, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [13] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究. 物理学报, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [14] 周武杰, 禹思敏. 基于IEEE-754标准和现场可编程门阵列技术的混沌产生器设计与实现. 物理学报, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
    [15] 于津江, 曹鹤飞, 许海波, 徐 权. 复合混沌系统的非线性动力学行为分析. 物理学报, 2006, 55(1): 29-34. doi: 10.7498/aps.55.29
    [16] 袁国勇, 杨世平, 王光瑞, 陈式刚. 两个延迟耦合FitzHugh-Nagumo系统的动力学行为. 物理学报, 2005, 54(4): 1510-1512. doi: 10.7498/aps.54.1510
    [17] 于津江, 张明轩, 徐海波. 对称混沌系统的非线性动力学行为及控制. 物理学报, 2004, 53(11): 3701-3705. doi: 10.7498/aps.53.3701
    [18] 化存才, 陆启韶. 吸收型光学双稳态方程的时变分岔与动力学行为. 物理学报, 2000, 49(4): 733-740. doi: 10.7498/aps.49.733
    [19] 彭建华, 田小健, 王培锦, 陈小兵. 在小信号激励下含非线性负阻网络电路系统的动力学行为. 物理学报, 1995, 44(2): 177-183. doi: 10.7498/aps.44.177
    [20] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为. 物理学报, 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
计量
  • 文章访问数:  7908
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 修回日期:  2019-04-16
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回