LIPIcs.SEA.2020.8.pdf
- Filesize: 0.69 MB
- 14 pages
In this paper, we explore the correlation between the quality of initial assignments provided to local search heuristics and that of the corresponding final assignments. We restrict our attention to the Max r-Sat problem and to one of the leading local search heuristics - Configuration Checking Local Search (CCLS). We use a tailored version of the Method of Conditional Expectations (MOCE) to generate initial assignments of diverse quality. We show that the correlation in question is significant and long-lasting. Namely, even when we delve deeper into the local search, we are still in the shadow of the initial assignment. Thus, under practical time constraints, the quality of the initial assignment is crucial to the performance of local search heuristics. To demonstrate our point, we improve CCLS by combining it with MOCE. Instead of starting CCLS from random initial assignments, we start it from excellent initial assignments, provided by MOCE. Indeed, it turns out that this kind of initialization provides a significant improvement of this state-of-the-art solver. This improvement becomes more and more significant as the instance grows.
Feedback for Dagstuhl Publishing