[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

Authors Václav Blažej , Satyabrata Jana , M. S. Ramanujan , Peter Strulo



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.4.pdf
  • Filesize: 1.04 MB
  • 20 pages

Document Identifiers

Author Details

Václav Blažej
  • University of Warwick, Coventry, UK
Satyabrata Jana
  • University of Warwick, Coventry, UK
M. S. Ramanujan
  • University of Warwick, Coventry, UK
Peter Strulo
  • University of Warwick, Coventry, UK

Cite As Get BibTex

Václav Blažej, Satyabrata Jana, M. S. Ramanujan, and Peter Strulo. On the Parameterized Complexity of Eulerian Strong Component Arc Deletion. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.4

Abstract

In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. 
This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter tractable (FPT) algorithm for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Parameterized complexity
  • Eulerian graphs
  • Treewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. C. A. Barefoot, R. Entringer, and H. C. Swart. Vulnerability in graphs—a comparative survey. JCMCC, 1:13-22, 1987. Google Scholar
  2. Václav Blazej, Satyabrata Jana, M. S. Ramanujan, and Peter Strulo. On the parameterized complexity of eulerian strong component arc deletion. CoRR, abs/2408.13819, 2024. URL: https://doi.org/10.48550/arXiv.2408.13819.
  3. Katarína Cechlárová and Ildikó Schlotter. Computing the deficiency of housing markets with duplicate houses. In Venkatesh Raman and Saket Saurabh, editors, Parameterized and Exact Computation - 5th International Symposium, IPEC 2010, Chennai, India, December 13-15, 2010. Proceedings, volume 6478 of Lecture Notes in Computer Science, pages 72-83. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-17493-3_9.
  4. Robert Crowston, Gregory Z. Gutin, Mark Jones, and Anders Yeo. Parameterized eulerian strong component arc deletion problem on tournaments. Inf. Process. Lett., 112(6):249-251, 2012. URL: https://doi.org/10.1016/J.IPL.2011.11.014.
  5. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  6. Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter. Parameterized complexity of eulerian deletion problems. Algorithmica, 68(1):41-61, 2014. URL: https://doi.org/10.1007/S00453-012-9667-X.
  7. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  8. Pål Grønås Drange, Markus S. Dregi, and Pim van 't Hof. On the computational complexity of vertex integrity and component order connectivity. Algorithmica, 76(4):1181-1202, 2016. URL: https://doi.org/10.1007/S00453-016-0127-X.
  9. András Frank and Éva Tardos. An application of simultaneous diophantine approximation in combinatorial optimization. Comb., 7(1):49-65, 1987. URL: https://doi.org/10.1007/BF02579200.
  10. Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci., 918:60-76, 2022. URL: https://doi.org/10.1016/J.TCS.2022.03.021.
  11. Alexander Göke, Dániel Marx, and Matthias Mnich. Parameterized algorithms for generalizations of directed feedback vertex set. Discret. Optim., 46:100740, 2022. URL: https://doi.org/10.1016/J.DISOPT.2022.100740.
  12. Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. Finding even subgraphs even faster. J. Comput. Syst. Sci., 97:1-13, 2018. URL: https://doi.org/10.1016/J.JCSS.2018.03.001.
  13. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39-49, 2013. URL: https://doi.org/10.1016/J.JCSS.2012.04.004.
  14. Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper. Res., 8(4):538-548, 1983. URL: https://doi.org/10.1287/MOOR.8.4.538.
  15. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):415-440, 1987. URL: https://doi.org/10.1287/MOOR.12.3.415.
  16. Richard M. Karp. Reducibility among combinatorial problems. In Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 219-241. Springer, 2010. URL: https://doi.org/10.1007/978-3-540-68279-0_8.
  17. Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for treewidth. In STOC, pages 528-541. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585245.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail