[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Close Relatives of Feedback Vertex Set Without Single-Exponential Algorithms Parameterized by Treewidth

Authors Benjamin Bergougnoux , Édouard Bonnet , Nick Brettell , O-joung Kwon



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2020.3.pdf
  • Filesize: 0.68 MB
  • 17 pages

Document Identifiers

Author Details

Benjamin Bergougnoux
  • Department of Informatics, University of Bergen, Norway
Édouard Bonnet
  • Université Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Nick Brettell
  • School of Mathematics and Statistics, Victoria University of Wellington, New Zealand
O-joung Kwon
  • Department of Mathematics, Incheon National University, South Korea
  • Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea

Acknowledgements

This work was initiated while the authors attended the "2019 IBS Summer research program on Algorithms and Complexity in Discrete Structures", hosted by the IBS discrete mathematics group.

Cite As Get BibTex

Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-joung Kwon. Close Relatives of Feedback Vertex Set Without Single-Exponential Algorithms Parameterized by Treewidth. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.IPEC.2020.3

Abstract

The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time 2^𝒪(tw)n^𝒪(1), for Feedback Vertex Set and connected versions of the classical graph problems (such as Vertex Cover and Dominating Set). We show that Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and Multiway Cut are unlikely to have such running times. More precisely, we match algorithms running in time 2^𝒪(tw log tw)n^𝒪(1) with tight lower bounds under the Exponential Time Hypothesis, ruling out 2^o(tw log tw)n^𝒪(1), where n is the number of vertices and tw is the treewidth of the input graph. Our algorithms extend to the weighted case, while our lower bounds also hold for the larger parameter pathwidth and do not require weights. We also show that, in contrast to Odd Cycle Transversal, there is no 2^o(tw log tw)n^𝒪(1)-time algorithm for Even Cycle Transversal.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Fixed parameter tractability
Keywords
  • Subset Feedback Vertex Set
  • Multiway Cut
  • Parameterized Algorithms
  • Treewidth
  • Graph Modification
  • Vertex Deletion Problems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth graphs. CoRR, abs/1704.07284, 2017. URL: http://arxiv.org/abs/1704.07284.
  2. Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 951-970. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.57.
  3. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86-111, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.008.
  4. Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal Pilipczuk. A c^kn 5-approximation algorithm for treewidth. SIAM J. Comput., 45(2):317-378, 2016. URL: https://doi.org/10.1137/130947374.
  5. Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala, and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings, pages 65-78, 2018. URL: https://doi.org/10.1007/978-3-030-00256-5_6.
  6. Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback vertex set problems on bounded-treewidth graphs: chordality is the key to single-exponential parameterized algorithms. Algorithmica, 81(10):3890-3935, 2019. URL: https://doi.org/10.1007/s00453-019-00579-4.
  7. Hajo Broersma, Petr A. Golovach, and Viresh Patel. Tight complexity bounds for FPT subgraph problems parameterized by the clique-width. Theor. Comput. Sci., 485:69-84, 2013. URL: https://doi.org/10.1016/j.tcs.2013.03.008.
  8. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  9. Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems. J. ACM, 64(3):18:1-18:22, 2017. URL: https://doi.org/10.1145/3051094.
  10. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  11. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150-159, 2011. URL: https://doi.org/10.1109/FOCS.2011.23.
  12. Xiaojie Deng, Bingkai Lin, and Chihao Zhang. Multi-multiway cut problem on graphs of bounded branch width. In Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, Third Joint International Conference, FAW-AAIM 2013, Dalian, China, June 26-28, 2013. Proceedings, pages 315-324, 2013. URL: https://doi.org/10.1007/978-3-642-38756-2_32.
  13. Pål Grønås Drange, Markus S. Dregi, and Pim van 't Hof. On the computational complexity of vertex integrity and component order connectivity. Algorithmica, 76(4):1181-1202, 2016. URL: https://doi.org/10.1007/s00453-016-0127-x.
  14. Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. Planar graph bipartization in linear time. Discret. Appl. Math., 156(7):1175-1180, 2008. URL: https://doi.org/10.1016/j.dam.2007.08.013.
  15. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3-20, 1997. URL: https://doi.org/10.1007/BF02523685.
  16. Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  17. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 760-776, 2011. URL: https://doi.org/10.1137/1.9781611973082.60.
  18. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized problems. SIAM J. Comput., 47(3):675-702, 2018. URL: https://doi.org/10.1137/16M1104834.
  19. Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A logical approach. In Mathematical Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, pages 520-531, 2011. URL: https://doi.org/10.1007/978-3-642-22993-0_47.
  20. Ignasi Sau and Uéverton S. Souza. Hitting forbidden induced subgraphs on bounded treewidth graphs. CoRR, abs/2004.08324, 2020. URL: http://arxiv.org/abs/2004.08324.
  21. Mingyu Xiao and Hiroshi Nagamochi. An FPT algorithm for edge subset feedback edge set. Inf. Process. Lett., 112(1-2):5-9, 2012. URL: https://doi.org/10.1016/j.ipl.2011.10.007.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail