LIPIcs.FSTTCS.2009.2333.pdf
- Filesize: 242 kB
- 12 pages
We study the problem of polynomial identity testing (PIT) for depth $2$ arithmetic circuits over matrix algebra. We show that identity testing of depth $3$ ($\Sigma \Pi \Sigma$) arithmetic circuits over a field $\F$ is polynomial time equivalent to identity testing of depth $2$ ($\Pi \Sigma$) arithmetic circuits over $\mathsf{U}_2(\mathbb{F})$, the algebra of upper-triangular $2\times 2$ matrices with entries from $\F$. Such a connection is a bit surprising since we also show that, as computational models, $\Pi \Sigma$ circuits over $\mathsf{U}_2(\mathbb{F})$ are strictly `weaker' than $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}$. The equivalence further implies that PIT of $\Sigma \Pi \Sigma$ circuits reduces to PIT of width-$2$ commutative \emph{Algebraic Branching Programs}(ABP). Further, we give a deterministic polynomial time identity testing algorithm for a $\Pi \Sigma$ circuit of size $s$ over commutative algebras of dimension $O(\log s/\log\log s)$ over $\F$. Over commutative algebras of dimension $\poly(s)$, we show that identity testing of $\Pi \Sigma$ circuits is at least as hard as that of $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}$.
Feedback for Dagstuhl Publishing