[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

The Line-Based Dial-a-Ride Problem

Authors Kendra Reiter , Marie Schmidt , Michael Stiglmayr



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2024.14.pdf
  • Filesize: 1.02 MB
  • 20 pages

Document Identifiers

Author Details

Kendra Reiter
  • Department of Computer Science, University of Würzburg, Germany
Marie Schmidt
  • Department of Computer Science, University of Würzburg, Germany
Michael Stiglmayr
  • Department of Mathematics and Informatics, University of Wuppertal, Germany

Cite As Get BibTex

Kendra Reiter, Marie Schmidt, and Michael Stiglmayr. The Line-Based Dial-a-Ride Problem. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/OASIcs.ATMOS.2024.14

Abstract

On-demand ridepooling systems offer flexible services pooling multiple passengers into one vehicle, complementing traditional bus services. We propose a transportation system combining the spatial aspects of a fixed sequence of bus stops with the temporal flexibility of ridepooling. In the line-based Dial-a-Ride problem (liDARP), vehicles adhere to a fixed, ordered sequence of stops in their routes, with the possibility of taking shortcuts and turning if they are empty. We propose three MILP formulations for the liDARP with a multi-objective function balancing environmental aspects with customer satisfaction, comparing them on a real-world bus line. Our experiments show that the formulation based on an Event-Based graph is the fastest, solving instances with up to 50 requests in under one second. Compared to the classical DARP, the liDARP is computationally faster, with minimal increases in total distance driven and average ride times.

Subject Classification

ACM Subject Classification
  • Applied computing → Transportation
Keywords
  • DARP
  • ridepooling
  • liDARP
  • public transport
  • on-demand

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dilay Aktas, Pieter Vansteenwegen, and Kenneth Sörensen. A demand-responsive bus system for peak hours with capacitated vehicles. In Proc. 11th Triennial Symposium on Transportation Analysis conference (TRISTAN XI), Mauritius Island, 2022. TRISTAN. Google Scholar
  2. Claudia Archetti, Dominique Feillet, Michel Gendreau, and M. Grazia Speranza. Complexity of the VRP and SDVRP. Transportation Research Part C: Emerging Technologies, 19(5):741-750, August 2011. URL: https://doi.org/10.1016/j.trc.2009.12.006.
  3. Andrea Attanasio, Jean-François Cordeau, Gianpaolo Ghiani, and Gilbert Laporte. Parallel Tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3):377-387, March 2004. URL: https://doi.org/10.1016/j.parco.2003.12.001.
  4. John W. Baugh, Gopala Krishna Reddy Kakivaza, and John R. Stone. Intractability of the Dial-a-Ride Problem and a Multiobjective Solution Using Simulated Annealing. Engineering Optimization, 30(2):91-123, February 1998. URL: https://doi.org/10.1080/03052159808941240.
  5. Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie Meißner, Miriam Schlöter, Kevin Schewior, and Leen Stougie. Tight bounds for online tsp on the line. ACM Transactions on Algorithms (TALG), 17(1):1-58, 2021. URL: https://doi.org/10.1145/3422362.
  6. Ingrid Busch. Vehicle routing on acyclic networks. Dissertation, The Johns Hopkins University, Baltimore, Maryland, 1991. Google Scholar
  7. Jean-François Cordeau. A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations Research, 54(3):573-586, 2006. URL: https://doi.org/10.1287/opre.1060.0283.
  8. Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579-594, 2003. URL: https://doi.org/10.1016/S0191-2615(02)00045-0.
  9. Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and algorithms. Annals of Operations Research, 153(1):29-46, 2007. URL: https://doi.org/10.1007/s10479-007-0170-8.
  10. Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie. Computer-aided complexity classification of dial-a-ride problems. INFORMS Journal on Computing, 16(2):120-132, 2004. URL: https://doi.org/10.1287/ijoc.1030.0052.
  11. Martin Desrochers and Gilbert Laporte. Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 10(1):27-36, 1991. URL: https://doi.org/10.1016/0167-6377(91)90083-2.
  12. Daniela Gaul, Kathrin Klamroth, Christian Pfeiffer, Arne Schulz, and Michael Stiglmayr. A Tight Formulation for the Dial-a-Ride Problem, 2023. URL: https://arxiv.org/abs/2308.11285.
  13. Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Solving the Dynamic Dial-a-Ride Problem Using a Rolling-Horizon Event-Based Graph. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics (OASIcs), pages 8:1-8:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2021.8.
  14. Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Event-based MILP models for ridepooling applications. European Journal of Operational Research, 301(3):1048-1063, 2022. URL: https://doi.org/10.1016/j.ejor.2021.11.053.
  15. Konstantinos Gkiotsalitis, Marie Schmidt, and Evelien van der Hurk. Subline frequency setting for autonomous minibusses under demand uncertainty. Transportation Research Part C: Emerging Technologies, 135:103492, 2022. URL: https://doi.org/10.1016/j.trc.2021.103492.
  16. Timo Gschwind and Stefan Irnich. Effective handling of dynamic time windows and its application to solving the dial-a-ride problem. Transportation Science, 49(2):335-354, 2015. URL: https://doi.org/10.1287/trsc.2014.0531.
  17. Sin C. Ho, Wai Yuen Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and Terence W.H. Tou. A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological, 111:395-421, 2018. URL: https://doi.org/10.1016/j.trb.2018.02.001.
  18. Omar J. Ibarra-Rojas, Felipe Delgado, Ricardo Giesen, and Juan Carlos Muñoz. Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 77:38-75, 2015. URL: https://doi.org/10.1016/j.trb.2015.03.002.
  19. Pei Liu, Marie Schmidt, Qingxia Kong, Joris Camiel Wagenaar, Lixing Yang, Ziyou Gao, and Housheng Zhou. A robust and energy-efficient train timetable for the subway system. Transportation Research Part C: Emerging Technologies, 121:102822, 2020. URL: https://doi.org/10.1016/j.trc.2020.102822.
  20. Yves Molenbruch, Kris Braekers, and An Caris. Typology and literature review for dial-a-ride problems. Annals of Operations Research, 259(1):295-325, 2017. URL: https://doi.org/10.1007/s10479-017-2525-0.
  21. OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.openstreetmap.org , 2017.
  22. Sophie N. Parragh. Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem. Transportation Research Part C: Emerging Technologies, 19(5):912-930, 2011. URL: https://doi.org/10.1016/j.trc.2010.06.002.
  23. Sophie N. Parragh and Verena Schmid. Hybrid column generation and large neighborhood search for the dial-a-ride problem. Computers & Operations Research, 40(1):490-497, 2013. URL: https://doi.org/10.1016/j.cor.2012.08.004.
  24. Christian Pfeiffer and Arne Schulz. An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization. OR Spectrum, 44(1):87-119, 2022. URL: https://doi.org/10.1007/s00291-021-00656-7.
  25. Harilaos N. Psaraftis. A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem. Transportation Science, 14(2):130-154, 1980. URL: https://doi.org/10.1287/trsc.14.2.130.
  26. Harilaos N. Psaraftis. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows. Transportation Science, 17(3):351-357, 1983. URL: https://doi.org/10.1287/trsc.17.3.351.
  27. Line Blander Reinhardt, Tommy Clausen, and David Pisinger. Synchronized dial-a-ride transportation of disabled passengers at airports. European Journal of Operational Research, 225(1):106-117, 2013. URL: https://doi.org/10.1016/j.ejor.2012.09.008.
  28. Kendra Reiter. The line-based Dial-a-Ride problem. Software, swhId: https://archive.softwareheritage.org/swh:1:dir:08f1ed7ba3a09a49eaffffffae74e8b1e5e7dd74;origin=https://github.com/ReiterKM/liDARP;visit=swh:1:snp:524c223863e09e0805437db626c16f633e4a1b65;anchor=swh:1:rev:d63855b2b17f2c872abbceefd1b6d996f6e09673 (visited on 2024-08-20). URL: https://github.com/ReiterKM/liDARP.
  29. Yannik Rist and Michael A. Forbes. A New Formulation for the Dial-a-Ride Problem. Transportation Science, 55(5):1113-1135, 2021. URL: https://doi.org/10.1287/trsc.2021.1044.
  30. Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks, 49(4):258-272, 2007. URL: https://doi.org/10.1002/net.20177.
  31. Stefan Ropke and David Pisinger. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4):455-472, 2006. URL: https://doi.org/10.1287/trsc.1050.0135.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail