Computer Science > Logic in Computer Science
[Submitted on 18 Feb 2011]
Title:Uncurrying for Innermost Termination and Derivational Complexity
View PDFAbstract:First-order applicative term rewriting systems provide a natural framework for modeling higher-order aspects. In earlier work we introduced an uncurrying transformation which is termination preserving and reflecting. In this paper we investigate how this transformation behaves for innermost termination and (innermost) derivational complexity. We prove that it reflects innermost termination and innermost derivational complexity and that it preserves and reflects polynomial derivational complexity. For the preservation of innermost termination and innermost derivational complexity we give counterexamples. Hence uncurrying may be used as a preprocessing transformation for innermost termination proofs and establishing polynomial upper and lower bounds on the derivational complexity. Additionally it may be used to establish upper bounds on the innermost derivational complexity while it neither is sound for proving innermost non-termination nor for obtaining lower bounds on the innermost derivational complexity.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Fri, 18 Feb 2011 01:44:38 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.