Computer Science > Software Engineering
[Submitted on 7 Jun 2016]
Title:Formal refinement of extended state machines
View PDFAbstract:In a traditional formal development process, e.g. using the B method, the informal user requirements are (manually) translated into a global abstract formal specification. This translation is especially difficult to achieve. The Event-B method was developed to incrementally and formally construct such a specification using stepwise refinement. Each increment takes into account new properties and system aspects. In this paper, we propose to couple a graphical notation called Algebraic State-Transition Diagrams (ASTD) with an Event-B specification in order to provide a better understanding of the software behaviour. The dynamic behaviour is captured by the ASTD, which is based on automata and process algebra operators, while the data model is described by means of an Event-B specification. We propose a methodology to incrementally refine such specification couplings, taking into account new refinement relations and consistency conditions between the control specification and the data specification. We compare the specifications obtained using each approach for readability and proof complexity. The advantages and drawbacks of the traditional approach and of our methodology are discussed. The whole process is illustrated by a railway CBTC-like case study. Our approach is supported by tools for translating ASTD's into B and Event-B into B.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 7 Jun 2016 04:08:52 UTC (136 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.