[1]
TA Tengku Mohd, J Baco, NF Abu Bakar, MZ Jaafar. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR). MATEC Web of Conferences. 69, 03006 (2016).
DOI: 10.1051/matecconf/20166903006
Google Scholar
[2]
L Wang, A Asthagiri, Y Zheng, WG Chapman. Simulation Studies on the Role of Lauryl Betaine in Modulating the Stability of AOS Surfactant-Stabilized Foams used in Enhanced Oil Recovery. Energy & Fuels. 31 (2017) 1512 – 1518.
DOI: 10.1021/acs.energyfuels.6b03186
Google Scholar
[3]
R Farajzadeh, R Krastev, PLJ Zitha. Foam Films Stabilized with Alpha Olefin Sulfonate (AOS). Colloids and Surface A: Physicochem. Eng. Aspects. 324 (2008) 35 – 40.
DOI: 10.1016/j.colsurfa.2008.03.024
Google Scholar
[4]
C Emegwalu. Enhanced Oil Recovery: Surfactant Flooding as a Possibility for the Norne E-Segment. 1st ed. (2009).
Google Scholar
[5]
A Khezrnejad, L James, T Johansen. Water Enhancement Using Nanoparticles in Water Alternating Gas (WAG) Micromodel Experiments. SPE Annual Technical Conference and Exhibition, (2014) 1-15.
DOI: 10.2118/173484-stu
Google Scholar
[6]
TS Horozov. Foams and foam stabilized by solid particles. Current Opinion in Colloid and Interface Science, 13 (2008) 134-140.
DOI: 10.1016/j.cocis.2007.11.009
Google Scholar
[7]
BP Binks. Particles as surfactants--similarities and differences. Current Opinion in Colloid & Interface Science, 7 (2002) 21-41.
DOI: 10.1016/s1359-0294(02)00008-0
Google Scholar
[8]
TA Tengku Mohd, AHM Muhayyidin, NA Ghazali, MZ Shahruddin, N Alias, S Arina, SN Ismail and NA Ramlee. Carbon Dioxide (CO2) Foam Stability Dependence on Nanoparticle Concentration for Enhanced Oil Recovery (EOR). Applied Mechanics and Materials, 548-549 (2014) 1876-1880.
DOI: 10.4028/www.scientific.net/amm.548-549.1876
Google Scholar
[9]
TA Tengku Mohd, N Alias, NA Ghazali, E Yahya, A Sauki, A Azizi, NM Yusof. Mobility Investigation of Nanoparticle-Stabilized Carbon Dioxide Foam for Enhanced Oil Recovery (EOR). Advanced Materials Research, 1119 (2015) 90–95.
DOI: 10.4028/www.scientific.net/amr.1119.90
Google Scholar
[10]
JJ Bikerman. Foams: Theory and Industrial Applications, New Work (1953).
Google Scholar
[11]
H Yousefvand, A Jafari. Enhanced Oil Recovery Using Polymer / nanosilica. Procedia Materials Science, 11 (2015) 565–570.
DOI: 10.1016/j.mspro.2015.11.068
Google Scholar
[12]
M Zargartalebi, R Kharrat, N Barati. Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel, 143 (2015) 21–27.
DOI: 10.1016/j.fuel.2014.11.040
Google Scholar
[13]
B Liu, J Shi, B Sun, Y Shen, J Zhang, X Chen, M Wang. Molecular dynamics simulation on volume swelling of CO2-alkane system. Fuel. 143 (2015) 194 – 201.
DOI: 10.1016/j.fuel.2014.11.046
Google Scholar
[14]
T., Fang, J., Shi, X., Sun, Y., Shen, Y., Yan, J., Zhang J., Liu B. Supercritical CO2 selective extraction inducing wettability alteration of oil reservoir. The journal of supercritical fluids. 113 (2016) 10-15.
DOI: 10.1016/j.supflu.2015.09.016
Google Scholar
[15]
L.S., de Lara, M.F., Michelon, C.R., Miranda. Molecular Dynamics Studies of Fluid/Oil Interfaces for Improved Oil Recovery Processess. The Journal of Physical Chemistry B. 116 (2012) 14667 – 14676.
DOI: 10.1021/jp310172j
Google Scholar
[16]
H., Sun, Z., Jin, C., Yang, R.L.C., Akkermans. Robertson, S. H., Spenley, N. A., Miller, S., Todd, S. M. COMPASS II: extended coverage for polymer and drug-like molecule databases. Journal of Molecular Modeling, 22 (2016) 1-10.
DOI: 10.1007/s00894-016-2909-0
Google Scholar
[17]
S., Yuan, S., Wang, X., Wang, M., Guo, Y., Wang, D., Wang D. Molecular dynamics simulation of oil detachment from calcite surface in aqueous surfactant solution. Computational and Theoretical Chemistry. 1092 (2016) 82 – 89.
DOI: 10.1016/j.comptc.2016.08.003
Google Scholar
[18]
B., Liu, J., Shi, M., Wang J., Zhang, B., Sun, Y., Shen, X., Sun. Reduction on Interfacial tension of water oil interface by supercritical CO2 in enhanced oil recovery process studied with molecular dynamics simulation. The Journal of Supercritical Fluid. 111 (2016) 171 – 178.
DOI: 10.1016/j.supflu.2015.11.001
Google Scholar
[19]
D., Makimura, M., Kunieda, Y., Liang, T., Matsuoka, S., Takahashi, H., Okabe. Application of Molecular Simulations to CO2-Enhanced Oil Recovery: Phase Equilibria and Interfacial Phenomena. SPE Journal. (2013) 319-330.
DOI: 10.2118/163099-pa
Google Scholar
[20]
J.P., Zeng, Y.S., Bai, S., Chen, C.A., Ma. Molecular dynamics simulation of diffusion of nitrobenzene in 3-methylimidazolium hexa fluoro phosphate ionic liquids. Journal of Molecular Liquids. 183 (2013) 1-7.
DOI: 10.1016/j.molliq.2013.03.021
Google Scholar
[21]
R., Gholizadeh, Y., Wang, Y.X. Yu. Molecular dynamics simulations of stability at the early stages of silica materials preparation. Journal of Molecular Structure. 1138 (2017) 198-207.
DOI: 10.1016/j.molstruc.2017.03.021
Google Scholar
[22]
J.P., Zeng, A., Wang, X., Gong, J., Chen, S., Chen, F., Xue. Molecular Dynamics Simulation of Diffusion of Vitamin C in Water Solution. Chinese Journal of Chemistry. 30 (2012) 115-120.
DOI: 10.1002/cjoc.201180459
Google Scholar
[23]
Y. Zhang, EJ. Maginn. A comparison of methods for melting point calculation using molecular dynamic simulation. The Journal of Chemical Physics. 136 (2012) 144166-1 – 1444166-12.
Google Scholar
[24]
P., Posocco, A., Perazzo, V., Preziosi, E., Laurini, S., Pricl, S., Guido. Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Advances. 6 (2016) 4723-4729.
DOI: 10.1039/c5ra24262b
Google Scholar
[25]
E., Mayoral, A.G., Goicochea. Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics. The Journal of Chemical Physics, 138 (2013) 094703.
DOI: 10.1063/1.4793742
Google Scholar
[26]
W., Xing Y., Song, Y., Zhang, M., Nishio, Y., Zhan, W., Jian, Y., Shen. Research Progress of the Interfacial tension in supercritical CO2-water/oil system. Energy Procedia. 37 (2013) 6928 – 6935.
DOI: 10.1016/j.egypro.2013.06.625
Google Scholar