[1]
F. Vatansever and M. R. Hamblin, Far infrared radiation (FIR): its biological effects and medical applications.,, Photonics Lasers Med., vol. 4, no. 2, p.255–266, Nov. 2012,.
DOI: 10.1515/plm-2012-0034
Google Scholar
[2]
A. S. Hussain, H. S. Hussain, N. Betcher, R. Behm, and B. Cagir, Proper use of noncontact infrared thermometry for temperature screening during COVID-19,, Sci. Rep., vol. 11, no. 1, p.11832, Dec. 2021,.
DOI: 10.1038/s41598-021-90100-1
Google Scholar
[3]
M. Bardou, P. Seng, L. Meddeb, J. Gaudart, E. Honnorat, and A. Stein, Modern approach to infectious disease management using infrared thermal camera scanning for fever in healthcare settings,, J. Infect., vol. 74, no. 1, p.95–97, Jan. 2017,.
DOI: 10.1016/j.jinf.2016.08.017
Google Scholar
[4]
S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, Applications of mid-infrared spectroscopy in the clinical laboratory setting,, Crit. Rev. Clin. Lab. Sci., vol. 55, no. 1, p.1–20, Jan. 2018,.
DOI: 10.1080/10408363.2017.1414142
Google Scholar
[5]
R. Selvaraj, N. J. Vasa, S. M. S. Nagendra, and B. Mizaikoff, Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics,, Molecules, vol. 25, no. 9, p.2227, May 2020,.
DOI: 10.3390/molecules25092227
Google Scholar
[6]
T. Koyama, N. Shibata, S. Kino, A. Sugiyama, N. Akikusa, and Y. Matsuura, A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser,, Sensors, vol. 20, no. 12, p.3438, Jun. 2020,.
DOI: 10.3390/s20123438
Google Scholar
[7]
M. A. Naeser, M. D. Ho, P. I. Martin, M. R. Hamblin, and B.-B. Koo, Increased Functional Connectivity Within Intrinsic Neural Networks in Chronic Stroke Following Treatment with Red/Near-Infrared Transcranial Photobiomodulation: Case Series with Improved Naming in Aphasia,, Photobiomodulation, Photomedicine, Laser Surg., vol. 38, no. 2, p.115–131, Feb. 2020,.
DOI: 10.1089/photob.2019.4630
Google Scholar
[8]
K.-S. Hong and M. A. Yaqub, Application of functional near-infrared spectroscopy in the healthcare industry: A review,, J. Innov. Opt. Health Sci., vol. 12, no. 06, p.1930012, Nov. 2019,.
DOI: 10.1142/s179354581930012x
Google Scholar
[9]
M. R. Hamblin, Photobiomodulation for traumatic brain injury and stroke,, J. Neurosci. Res., vol. 96, no. 4, p.731–743, Apr. 2018,.
Google Scholar
[10]
P. Jain, A. M. Joshi, and S. P. Mohanty, iGLU: An Intelligent Device for Accurate Noninvasive Blood Glucose-Level Monitoring in Smart Healthcare,, IEEE Consum. Electron. Mag., vol. 9, no. 1, p.35–42, Jan. 2020,.
DOI: 10.1109/mce.2019.2940855
Google Scholar
[11]
S. Badriah, Y. Bahtiar, and A. Andang, Near Infrared LEDs-Based Non-Invasive Blood Sugar Testing for Detecting Blood Sugar Levels on Diabetic Care,, J. Biomimetics, Biomater. Biomed. Eng., vol. 55, p.183–191, Mar. 2022,.
DOI: 10.4028/p-vthp40
Google Scholar
[12]
B. Javid, F. Fotouhi-Ghazvini, and F. Zakeri, Noninvasive optical diagnostic techniques for mobile blood glucose and bilirubin monitoring,, J. Med. Signals Sensors, vol. 8, no. 3, p.125, 2018,.
DOI: 10.4103/jmss.jmss_8_18
Google Scholar
[13]
P. Pellicori et al., Non-invasive measurement of right atrial pressure by near-infrared spectroscopy: preliminary experience. A report from the SICA-HF study,, Eur. J. Heart Fail., vol. 19, no. 7, p.883–892, Jul. 2017,.
DOI: 10.1002/ejhf.825
Google Scholar
[14]
H. Xu, J. Liu, J. Zhang, G. Zhou, N. Luo, and N. Zhao, Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring,, Adv. Mater., vol. 29, no. 31, p.1–6, 2017,.
DOI: 10.1002/adma.201700975
Google Scholar
[15]
A. Khaliduzzaman, S. Fujitani, A. Kashimori, T. Suzuki, Y. Ogawa, and N. Kondo, A non-invasive diagnosis technique of chick embryonic cardiac arrhythmia using near infrared light,, Comput. Electron. Agric., vol. 158, no. February, p.326–334, Mar. 2019,.
DOI: 10.1016/j.compag.2019.02.014
Google Scholar
[16]
N. S. Ali, Z. A. A. Alyasseri, and A. Abdulmohson, Real-Time Heart Pulse Monitoring Technique Using Wireless Sensor Network and Mobile Application,, Int. J. Electr. Comput. Eng., vol. 8, no. 6, p.5118, Dec. 2018,.
DOI: 10.11591/ijece.v8i6.pp5118-5126
Google Scholar
[17]
G. Simone et al., High‐Accuracy Photoplethysmography Array Using Near‐Infrared Organic Photodiodes with Ultralow Dark Current,, Adv. Opt. Mater., vol. 8, no. 10, p.1901989, May 2020,.
DOI: 10.1002/adom.201901989
Google Scholar
[18]
N. Hakimi, A. Jodeiri, M. Mirbagheri, and S. K. Setarehdan, Proposing a convolutional neural network for stress assessment by means of derived heart rate from functional near infrared spectroscopy,, Comput. Biol. Med., vol. 121, no. May, p.103810, Jun. 2020,.
DOI: 10.1016/j.compbiomed.2020.103810
Google Scholar
[19]
K. Oiwa, Y. Ozawa, K. Nagumo, S. Nishimura, Y. Nanai, and A. Nozawa, Remote Blood Pressure Sensing Using Near-Infrared Wideband LEDs,, IEEE Sens. J., vol. 21, no. 21, p.24327–24337, Nov. 2021,.
DOI: 10.1109/jsen.2021.3111628
Google Scholar
[20]
Y. Ozawa, K. Oiwa, S. Miyazaki, S. Nishimura, Y. Nanai, and A. Nozawa, Improving the Accuracy of Noncontact Blood Pressure Sensing Using Near-Infrared Light,, IEEJ Trans. Electron. Inf. Syst., vol. 140, no. 7, p.769–774, Jul. 2020,.
DOI: 10.1541/ieejeiss.140.769
Google Scholar
[21]
G. Wang, M. Atef, and Y. Lian, Towards a Continuous Non-Invasive Cuffless Blood Pressure Monitoring System Using PPG: Systems and Circuits Review,, IEEE Circuits Syst. Mag., vol. 18, no. 3, p.6–26, 2018,.
DOI: 10.1109/mcas.2018.2849261
Google Scholar
[22]
V. P. Rachim, T. H. Huynh, and W.-Y. Chung, Wrist Photo-Plethysmography and Bio-Impedance Sensor for Cuff-Less Blood Pressure Monitoring,, in 2018 IEEE SENSORS, Oct. 2018, vol. 2018-Octob, p.1–4.
DOI: 10.1109/icsens.2018.8589559
Google Scholar
[23]
P. Bansal, M. Malik, and R. Kundu, Smart heart rate monitoring system,, in 2018 IEEMA Engineer Infinite Conference (eTechNxT), Mar. 2018, p.1–4.
DOI: 10.1109/etechnxt.2018.8385347
Google Scholar
[24]
D. Biswas, N. Simoes-Capela, C. Van Hoof, and N. Van Helleputte, Heart Rate Estimation From Wrist-Worn Photoplethysmography: A Review,, IEEE Sens. J., vol. 19, no. 16, p.6560–6570, Aug. 2019,.
DOI: 10.1109/jsen.2019.2914166
Google Scholar
[25]
K. Matsumura, S. Toda, and Y. Kato, RGB and Near-Infrared Light Reflectance/Transmittance Photoplethysmography for Measuring Heart Rate During Motion,, IEEE Access, vol. 8, p.80233–80242, 2020,.
DOI: 10.1109/access.2020.2990438
Google Scholar
[26]
I. Lee, N. Park, H. Lee, C. Hwang, J. H. Kim, and S. Park, Systematic Review on Human Skin-Compatible Wearable Photoplethysmography Sensors,, Appl. Sci., vol. 11, no. 5, p.2313, Mar. 2021,.
DOI: 10.3390/app11052313
Google Scholar
[27]
A. Hina and W. Saadeh, A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography,, IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 3, p.504–515, Jun. 2020,.
DOI: 10.1109/tbcas.2020.2979514
Google Scholar
[28]
S. Ramasahayam, L. Arora, and S. R. Chowdhury, FPGA Based Smart System for Non Invasive Blood Glucose Sensing Using Photoplethysmography and Online Correction of Motion Artifact,, in Smart Sensors, Measurement and Instrumentation, vol. 22, 2017, p.1–21.
DOI: 10.1007/978-3-319-47319-2_1
Google Scholar
[29]
Y. (Joseph) Segman, Device and Method for Noninvasive Glucose Assessment,, J. Diabetes Sci. Technol., vol. 12, no. 6, p.1159–1168, Nov. 2018,.
DOI: 10.1177/1932296818763457
Google Scholar
[30]
M. Strik et al., Smartwatch-based detection of cardiac arrhythmias: Beyond the differentiation between sinus rhythm and atrial fibrillation,, Hear. Rhythm, vol. 18, no. 9, p.1524–1532, Sep. 2021,.
DOI: 10.1016/j.hrthm.2021.06.1176
Google Scholar
[31]
J. Yadav, A. Rani, V. Singh, and B. M. Murari, Comparative Study of Different Measurement Sites Using NIR Based Non-invasive Glucose Measurement System,, Procedia Comput. Sci., vol. 70, p.469–475, 2015,.
DOI: 10.1016/j.procs.2015.10.082
Google Scholar
[32]
A. Kassem, M. Hamad, G. G. Harbieh, and C. El Moucary, A Non-Invasive Blood Glucose Monitoring Device,, in 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME), Oct. 2020, vol. 2020-Octob, no. 978, p.1–4.
DOI: 10.1109/mecbme47393.2020.9265170
Google Scholar
[33]
E. Sazonov, WEARABLE SENSORS Fundamentals, Implementation and Applications, 2nd editio., no. July. Elsevier, (2021).
Google Scholar
[34]
M. R. Haque, S. M. T. Uddin Raju, M. A.-U. Golap, and M. M. A. Hashem, Corrections to 'A Novel Technique for Non-Invasive Measurement of Human Blood Component Levels From Fingertip Video Using DNN Based Models,', IEEE Access, vol. 9, p.84178–84179, 2021,.
DOI: 10.1109/access.2021.3087280
Google Scholar
[35]
V. Periyasamy, M. Pramanik, and P. K. Ghosh, Review on Heart-Rate Estimation from Photoplethysmography and Accelerometer Signals During Physical Exercise,, J. Indian Inst. Sci., vol. 97, no. 3, p.313–324, Sep. 2017,.
DOI: 10.1007/s41745-017-0037-1
Google Scholar
[36]
A. Kamišalić, I. Fister, M. Turkanović, and S. Karakatič, Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review,, Sensors, vol. 18, no. 6, p.1714, May 2018,.
DOI: 10.3390/s18061714
Google Scholar
[37]
F. J. Velez and Fardin Derogarian Miyandoab, Wearable Technologies and Wireless Body Sensor Networks for Healthcare. Institution of Engineering and Technology, 2019. [Online]. Available: https://digital-library.theiet.org/content/books/10.1049/pbhe011e_ch2.
DOI: 10.1049/pbhe011e
Google Scholar
[38]
L. Adhikari and S. K. Pahuja, Mathematical Modeling and Simulation of Photoplethysmography,, in 2020 International Conference on Communication and Signal Processing (ICCSP), Jul. 2020, p.1307–1311.
DOI: 10.1109/iccsp48568.2020.9182070
Google Scholar
[39]
Maxim Integrated, MAX30102 - High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable Health,, 2015. [Online]. Available: https://www.maximintegrated.com/en/products/ sensors/MAX30102.html.
Google Scholar
[40]
M. A. Motin, P. P. Das, C. K. Karmakar, and M. Palaniswami, Compact Pulse Oximeter Designed for Blood Oxygen Saturation and Heart Rate Monitoring,, in 2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE), Dec. 2021, p.125–128.
DOI: 10.1109/iceee54059.2021.9718773
Google Scholar
[41]
L. Fiorini, F. Cavallo, M. Martinelli, and E. Rovini, Characterization of a PPG Wearable Sensor to Be Embedded into an Innovative Ring-Shaped Device for Healthcare Monitoring,, in Lecture Notes in Electrical Engineering, vol. 725, 2021, p.49–63.
DOI: 10.1007/978-3-030-63107-9_5
Google Scholar
[42]
R. Kopel et al., No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI,, Neuroimage, vol. 191, no. February, p.421–429, May 2019,.
DOI: 10.1016/j.neuroimage.2019.02.058
Google Scholar
[43]
X. Dong, G. Li, Y. Jia, B. Li, and K. He, Non-iterative denoising algorithm for mechanical vibration signal using spectral graph wavelet transform and detrended fluctuation analysis,, Mech. Syst. Signal Process., vol. 149, p.107202, Feb. 2021,.
DOI: 10.1016/j.ymssp.2020.107202
Google Scholar
[44]
G. Georgieva-Tsaneva, E. Gospodinova, M. Gospodinov, and K. Cheshmedzhiev, Portable Sensor System for Registration, Processing and Mathematical Analysis of PPG Signals,, Appl. Sci., vol. 10, no. 3, p.1051, Feb. 2020,.
DOI: 10.3390/app10031051
Google Scholar
[45]
M. S. Milivojevic, A. Gavrovska, I. Reljin, and B. Reljin, Using Optical IoT Sensing for Detrended Fluctuation Analysis of Skin Blood Pulsation during Visual Stimulation Task,, in 2019 27th Telecommunications Forum (TELFOR), Nov. 2019, p.1–4.
DOI: 10.1109/telfor48224.2019.8971288
Google Scholar
[46]
S. Rajala, H. Lindholm, and T. Taipalus, Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time,, Physiol. Meas., vol. 39, no. 7, p.075010, Aug. 2018,.
DOI: 10.1088/1361-6579/aac7ac
Google Scholar
[47]
P.-Y. Tsai et al., Coherence between Decomposed Components of Wrist and Finger PPG Signals by Imputing Missing Features and Resolving Ambiguous Features,, Sensors, vol. 21, no. 13, p.4315, Jun. 2021,.
DOI: 10.3390/s21134315
Google Scholar