Computer Science > Sound
[Submitted on 28 Dec 2023]
Title:Remixed2Remixed: Domain adaptation for speech enhancement by Noise2Noise learning with Remixing
View PDF HTML (experimental)Abstract:This paper proposes Remixed2Remixed, a domain adaptation method for speech enhancement, which adopts Noise2Noise (N2N) learning to adapt models trained on artificially generated (out-of-domain: OOD) noisy-clean pair data to better separate real-world recorded (in-domain) noisy data. The proposed method uses a teacher model trained on OOD data to acquire pseudo-in-domain speech and noise signals, which are shuffled and remixed twice in each batch to generate two bootstrapped mixtures. The student model is then trained by optimizing an N2N-based cost function computed using these two bootstrapped mixtures. As the training strategy is similar to the recently proposed RemixIT, we also investigate the effectiveness of N2N-based loss as a regularization of RemixIT. Experimental results on the CHiME-7 unsupervised domain adaptation for conversational speech enhancement (UDASE) task revealed that the proposed method outperformed the challenge baseline system, RemixIT, and reduced the blurring of performance caused by teacher models.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.