Mathematics > Numerical Analysis
[Submitted on 25 Dec 2023 (v1), last revised 20 Nov 2024 (this version, v2)]
Title:Maximum bound principle preserving and energy decreasing exponential time differencing schemes for the matrix-valued Allen-Cahn equation
View PDF HTML (experimental)Abstract:This work delves into the exponential time differencing (ETD) schemes for the matrix-valued Allen-Cahn equation. In fact, the maximum bound principle (MBP) for the first- and second-order ETD schemes is presented in a prior publication [SIAM Review, 63(2), 2021], assuming a symmetric initial matrix field. Noteworthy is our novel contribution, demonstrating that the first- and second-order ETD schemes for the matrix-valued Allen-Cahn equation -- both being linear schemes -- unconditionally preserve the MBP, even in instances of nonsymmetric initial conditions. Additionally, we prove that these two ETD schemes preserve the energy dissipation law unconditionally for the matrix-valued Allen-Cahn equation. Some numerical examples are presented to verify our theoretical results and to simulate the evolution of corresponding matrix fields.
Submission history
From: Chaoyu Quan [view email][v1] Mon, 25 Dec 2023 05:22:48 UTC (15,633 KB)
[v2] Wed, 20 Nov 2024 04:28:48 UTC (15,390 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.