Computer Science > Machine Learning
[Submitted on 20 Dec 2023 (v1), last revised 18 Jan 2024 (this version, v3)]
Title:Pre-training of Molecular GNNs via Conditional Boltzmann Generator
View PDFAbstract:Learning representations of molecular structures using deep learning is a fundamental problem in molecular property prediction tasks. Molecules inherently exist in the real world as three-dimensional structures; furthermore, they are not static but in continuous motion in the 3D Euclidean space, forming a potential energy surface. Therefore, it is desirable to generate multiple conformations in advance and extract molecular representations using a 4D-QSAR model that incorporates multiple conformations. However, this approach is impractical for drug and material discovery tasks because of the computational cost of obtaining multiple conformations. To address this issue, we propose a pre-training method for molecular GNNs using an existing dataset of molecular conformations to generate a latent vector universal to multiple conformations from a 2D molecular graph. Our method, called Boltzmann GNN, is formulated by maximizing the conditional marginal likelihood of a conditional generative model for conformations generation. We show that our model has a better prediction performance for molecular properties than existing pre-training methods using molecular graphs and three-dimensional molecular structures.
Submission history
From: Daiki Koge [view email][v1] Wed, 20 Dec 2023 15:30:15 UTC (722 KB)
[v2] Sun, 31 Dec 2023 06:47:40 UTC (721 KB)
[v3] Thu, 18 Jan 2024 22:28:06 UTC (718 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.