Computer Science > Machine Learning
[Submitted on 18 Dec 2023]
Title:Vesicoureteral Reflux Detection with Reliable Probabilistic Outputs
View PDF HTML (experimental)Abstract:Vesicoureteral Reflux (VUR) is a pediatric disorder in which urine flows backwards from the bladder to the upper urinary tract. Its detection is of great importance as it increases the risk of a Urinary Tract Infection, which can then lead to a kidney infection since bacteria may have direct access to the kidneys. Unfortunately the detection of VUR requires a rather painful medical examination, called voiding cysteourethrogram (VCUG), that exposes the child to radiation. In an effort to avoid the exposure to radiation required by VCUG some recent studies examined the use of machine learning techniques for the detection of VUR based on data that can be obtained without exposing the child to radiation. This work takes one step further by proposing an approach that provides lower and upper bounds for the conditional probability of a given child having VUR. The important property of these bounds is that they are guaranteed (up to statistical fluctuations) to contain well-calibrated probabilities with the only requirement that observations are independent and identically distributed (i.i.d.). Therefore they are much more informative and reliable than the plain yes/no answers provided by other techniques.
Submission history
From: Harris Papadopoulos [view email][v1] Mon, 18 Dec 2023 17:10:10 UTC (57 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.