Computer Science > Machine Learning
[Submitted on 15 Dec 2023 (v1), last revised 21 Feb 2024 (this version, v2)]
Title:Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning
View PDF HTML (experimental)Abstract:In this work, we analyze the conditions under which information about the context of an input $X$ can improve the predictions of deep learning models in new domains. Following work in marginal transfer learning in Domain Generalization (DG), we formalize the notion of context as a permutation-invariant representation of a set of data points that originate from the same domain as the input itself. We offer a theoretical analysis of the conditions under which this approach can, in principle, yield benefits, and formulate two necessary criteria that can be easily verified in practice. Additionally, we contribute insights into the kind of distribution shifts for which the marginal transfer learning approach promises robustness. Empirical analysis shows that our criteria are effective in discerning both favorable and unfavorable scenarios. Finally, we demonstrate that we can reliably detect scenarios where a model is tasked with unwarranted extrapolation in out-of-distribution (OOD) domains, identifying potential failure cases. Consequently, we showcase a method to select between the most predictive and the most robust model, circumventing the well-known trade-off between predictive performance and robustness.
Submission history
From: Jens Müller [view email][v1] Fri, 15 Dec 2023 05:18:07 UTC (7,332 KB)
[v2] Wed, 21 Feb 2024 13:57:19 UTC (8,780 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.