Computer Science > Computer Science and Game Theory
[Submitted on 12 Dec 2023]
Title:Calibrating "Cheap Signals" in Peer Review without a Prior
View PDFAbstract:Peer review lies at the core of the academic process, but even well-intentioned reviewers can still provide noisy ratings. While ranking papers by average ratings may reduce noise, varying noise levels and systematic biases stemming from ``cheap'' signals (e.g. author identity, proof length) can lead to unfairness. Detecting and correcting bias is challenging, as ratings are subjective and unverifiable. Unlike previous works relying on prior knowledge or historical data, we propose a one-shot noise calibration process without any prior information. We ask reviewers to predict others' scores and use these predictions for calibration. Assuming reviewers adjust their predictions according to the noise, we demonstrate that the calibrated score results in a more robust ranking compared to average ratings, even with varying noise levels and biases. In detail, we show that the error probability of the calibrated score approaches zero as the number of reviewers increases and is significantly lower compared to average ratings when the number of reviewers is small.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.