Computer Science > Machine Learning
[Submitted on 5 Dec 2023 (v1), last revised 17 Nov 2024 (this version, v3)]
Title:Pseudo Replay-based Class Continual Learning for Online New Category Anomaly Detection in Advanced Manufacturing
View PDFAbstract:The incorporation of advanced sensors and machine learning techniques has enabled modern manufacturing enterprises to perform data-driven classification-based anomaly detection based on the sensor data collected in manufacturing processes. However, one critical challenge is that newly presented defect category may manifest as the manufacturing process continues, resulting in monitoring performance deterioration of previously trained machine learning models. Hence, there is an increasing need for empowering machine learning models to learn continually. Among all continual learning methods, memory-based continual learning has the best performance but faces the constraints of data storage capacity. To address this issue, this paper develops a novel pseudo replay-based continual learning framework by integrating class incremental learning and oversampling-based data generation. Without storing all the data, the developed framework could generate high-quality data representing previous classes to train machine learning model incrementally when new category anomaly occurs. In addition, it could even enhance the monitoring performance since it also effectively improves the data quality. The effectiveness of the proposed framework is validated in three cases studies, which leverages supervised classification problem for anomaly detection. The experimental results show that the developed method is very promising in detecting novel anomaly while maintaining a good performance on the previous task and brings up more flexibility in model architecture.
Submission history
From: Yuxuan Li [view email][v1] Tue, 5 Dec 2023 04:43:23 UTC (1,009 KB)
[v2] Wed, 4 Sep 2024 12:43:48 UTC (2,604 KB)
[v3] Sun, 17 Nov 2024 15:22:02 UTC (2,614 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.