Computer Science > Machine Learning
[Submitted on 4 Dec 2023 (v1), last revised 29 May 2024 (this version, v3)]
Title:ImputeFormer: Low Rankness-Induced Transformers for Generalizable Spatiotemporal Imputation
View PDF HTML (experimental)Abstract:Missing data is a pervasive issue in both scientific and engineering tasks, especially for the modeling of spatiotemporal data. This problem attracts many studies to contribute to data-driven solutions. Existing imputation solutions mainly include low-rank models and deep learning models. The former assumes general structural priors but has limited model capacity. The latter possesses salient features of expressivity but lacks prior knowledge of the underlying spatiotemporal structures. Leveraging the strengths of both two paradigms, we demonstrate a low rankness-induced Transformer to achieve a balance between strong inductive bias and high model expressivity. The exploitation of the inherent structures of spatiotemporal data enables our model to learn balanced signal-noise representations, making it generalizable for a variety of imputation problems. We demonstrate its superiority in terms of accuracy, efficiency, and versatility in heterogeneous datasets, including traffic flow, solar energy, smart meters, and air quality. Promising empirical results provide strong conviction that incorporating time series primitives, such as low-rankness, can substantially facilitate the development of a generalizable model to approach a wide range of spatiotemporal imputation problems.
Submission history
From: Tong Nie [view email][v1] Mon, 4 Dec 2023 08:35:31 UTC (2,709 KB)
[v2] Fri, 29 Dec 2023 06:29:57 UTC (4,448 KB)
[v3] Wed, 29 May 2024 01:39:55 UTC (7,257 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.