Computer Science > Neural and Evolutionary Computing
[Submitted on 7 Nov 2023]
Title:Estimating Post-Synaptic Effects for Online Training of Feed-Forward SNNs
View PDFAbstract:Facilitating online learning in spiking neural networks (SNNs) is a key step in developing event-based models that can adapt to changing environments and learn from continuous data streams in real-time. Although forward-mode differentiation enables online learning, its computational requirements restrict scalability. This is typically addressed through approximations that limit learning in deep models. In this study, we propose Online Training with Postsynaptic Estimates (OTPE) for training feed-forward SNNs, which approximates Real-Time Recurrent Learning (RTRL) by incorporating temporal dynamics not captured by current approximations, such as Online Training Through Time (OTTT) and Online Spatio-Temporal Learning (OSTL). We show improved scaling for multi-layer networks using a novel approximation of temporal effects on the subsequent layer's activity. This approximation incurs minimal overhead in the time and space complexity compared to similar algorithms, and the calculation of temporal effects remains local to each layer. We characterize the learning performance of our proposed algorithms on multiple SNN model configurations for rate-based and time-based encoding. OTPE exhibits the highest directional alignment to exact gradients, calculated with backpropagation through time (BPTT), in deep networks and, on time-based encoding, outperforms other approximate methods. We also observe sizeable gains in average performance over similar algorithms in offline training of Spiking Heidelberg Digits with equivalent hyper-parameters (OTTT/OSTL - 70.5%; OTPE - 75.2%; BPTT - 78.1%).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.