Computer Science > Machine Learning
[Submitted on 27 Nov 2023]
Title:Attend Who is Weak: Enhancing Graph Condensation via Cross-Free Adversarial Training
View PDFAbstract:In this paper, we study the \textit{graph condensation} problem by compressing the large, complex graph into a concise, synthetic representation that preserves the most essential and discriminative information of structure and features. We seminally propose the concept of Shock Absorber (a type of perturbation) that enhances the robustness and stability of the original graphs against changes in an adversarial training fashion. Concretely, (I) we forcibly match the gradients between pre-selected graph neural networks (GNNs) trained on a synthetic, simplified graph and the original training graph at regularly spaced intervals. (II) Before each update synthetic graph point, a Shock Absorber serves as a gradient attacker to maximize the distance between the synthetic dataset and the original graph by selectively perturbing the parts that are underrepresented or insufficiently informative. We iteratively repeat the above two processes (I and II) in an adversarial training fashion to maintain the highly-informative context without losing correlation with the original dataset. More importantly, our shock absorber and the synthesized graph parallelly share the backward process in a free training manner. Compared to the original adversarial training, it introduces almost no additional time overhead.
We validate our framework across 8 datasets (3 graph and 5 node classification datasets) and achieve prominent results: for example, on Cora, Citeseer and Ogbn-Arxiv, we can gain nearly 1.13% to 5.03% improvements compare with SOTA models. Moreover, our algorithm adds only about 0.2% to 2.2% additional time overhead over Flicker, Citeseer and Ogbn-Arxiv. Compared to the general adversarial training, our approach improves time efficiency by nearly 4-fold.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.