Computer Science > Computer Science and Game Theory
[Submitted on 23 Nov 2023]
Title:Robust Decision Aggregation with Second-order Information
View PDFAbstract:We consider a decision aggregation problem with two experts who each make a binary recommendation after observing a private signal about an unknown binary world state. An agent, who does not know the joint information structure between signals and states, sees the experts' recommendations and aims to match the action with the true state. Under the scenario, we study whether supplemented additionally with second-order information (each expert's forecast on the other's recommendation) could enable a better aggregation.
We adopt a minimax regret framework to evaluate the aggregator's performance, by comparing it to an omniscient benchmark that knows the joint information structure. With general information structures, we show that second-order information provides no benefit. No aggregator can improve over a trivial aggregator, which always follows the first expert's recommendation. However, positive results emerge when we assume experts' signals are conditionally independent given the world state. When the aggregator is deterministic, we present a robust aggregator that leverages second-order information, which can significantly outperform counterparts without it. Second, when two experts are homogeneous, by adding a non-degenerate assumption on the signals, we demonstrate that random aggregators using second-order information can surpass optimal ones without it. In the remaining settings, the second-order information is not beneficial. We also extend the above results to the setting when the aggregator's utility function is more general.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.