Computer Science > Human-Computer Interaction
[Submitted on 20 Nov 2023]
Title:Bridging Learnersourcing and AI: Exploring the Dynamics of Student-AI Collaborative Feedback Generation
View PDFAbstract:This paper explores the space of optimizing feedback mechanisms in complex domains, such as data science, by combining two prevailing approaches: Artificial Intelligence (AI) and learnersourcing. Towards addressing the challenges posed by each approach, this work compares traditional learnersourcing with an AI-supported approach. We report on the results of a randomized controlled experiment conducted with 72 Master's level students in a data visualization course, comparing two conditions: students writing hints independently versus revising hints generated by GPT-4. The study aimed to evaluate the quality of learnersourced hints, examine the impact of student performance on hint quality, gauge learner preference for writing hints with or without AI support, and explore the potential of the student-AI collaborative exercise in fostering critical thinking about LLMs. Based on our findings, we provide insights for designing learnersourcing activities leveraging AI support and optimizing students' learning as they interact with LLMs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.