Computer Science > Computational Complexity
[Submitted on 20 Nov 2023]
Title:Configuring an heterogeneous smartgrid network: complexity and approximations for tree topologies
View PDFAbstract:We address the problem of configuring a power distribution network with reliability and resilience objectives by satisfying the demands of the consumers and saturating each production source as little as possible. We consider power distribution networks containing source nodes producing electricity, nodes representing electricity consumers and switches between them. Configuring this network consists in deciding the orientation of the links between the nodes of the network. The electric flow is a direct consequence of the chosen configuration and can be computed in polynomial time. It is valid if it satisfies the demand of each consumer and capacity constraints on the network. In such a case, we study the problem of determining a feasible solution that balances the loads of the sources, that is their production rates. We use three metrics to measure the quality of a solution: minimizing the maximum load, maximizing the minimum load and minimizing the difference of the maximum and the minimum loads. This defines optimization problems called respectively min-M, max-m and min-R. In the case where the graph of the network is a tree, it is known that the problem of building a valid configuration is polynomial. We show the three optimization variants have distinct properties regarding the theoretical complexity and the approximability. Particularly, we show that min-M is polynomial, that max-m is NP-Hard but belongs to the class FPTAS and that min-R is NP-Hard, cannot 1 be approximated to within any exponential relative ratio but, for any $\epsilon$ > 0, there exists an algorithm for which the value of the returned solution equals the value of an optimal solution shifted by at most $\epsilon$.
Submission history
From: Dimitri Watel [view email] [via CCSD proxy][v1] Mon, 20 Nov 2023 12:22:26 UTC (35 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.