Computer Science > Computation and Language
[Submitted on 15 Nov 2023]
Title:Value FULCRA: Mapping Large Language Models to the Multidimensional Spectrum of Basic Human Values
View PDFAbstract:The rapid advancement of Large Language Models (LLMs) has attracted much attention to value alignment for their responsible development. However, how to define values in this context remains a largely unexplored question. Existing work mainly follows the Helpful, Honest, Harmless principle and specifies values as risk criteria formulated in the AI community, e.g., fairness and privacy protection, suffering from poor clarity, adaptability and transparency. Inspired by basic values in humanity and social science across cultures, this work proposes a novel basic value alignment paradigm and introduces a value space spanned by basic value dimensions. All LLMs' behaviors can be mapped into the space by identifying the underlying values, possessing the potential to address the three challenges. To foster future research, we apply the representative Schwartz's Theory of Basic Values as an initialized example and construct FULCRA, a dataset consisting of 5k (LLM output, value vector) pairs. Our extensive analysis of FULCRA reveals the underlying relation between basic values and LLMs' behaviors, demonstrating that our approach not only covers existing mainstream risks but also anticipates possibly unidentified ones. Additionally, we present an initial implementation of the basic value evaluation and alignment, paving the way for future research in this line.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.