Electrical Engineering and Systems Science > Signal Processing
[Submitted on 14 Nov 2023 (v1), last revised 7 Dec 2023 (this version, v2)]
Title:Robust Learning Based Condition Diagnosis Method for Distribution Network Switchgear
View PDFAbstract:This paper introduces a robust, learning-based method for diagnosing the state of distribution network switchgear, which is crucial for maintaining the power quality for end users. Traditional diagnostic models often rely heavily on expert knowledge and lack robustness. To address this, our method incorporates an expanded feature vector that includes environmental data, temperature readings, switch position, motor operation, insulation conditions, and local discharge information. We tackle the issue of high dimensionality through feature mapping. The method introduces a decision radius to categorize unlabeled samples and updates the model parameters using a combination of supervised and unsupervised loss, along with a consistency regularization function. This approach ensures robust learning even with a limited number of labeled samples. Comparative analysis demonstrates that this method significantly outperforms existing models in both accuracy and robustness.
Submission history
From: Sizhe Li [view email][v1] Tue, 14 Nov 2023 07:20:46 UTC (899 KB)
[v2] Thu, 7 Dec 2023 00:17:41 UTC (899 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.