Computer Science > Software Engineering
[Submitted on 8 Nov 2023]
Title:Software Architecture Recovery with Information Fusion
View PDFAbstract:Understanding the architecture is vital for effectively maintaining and managing large software systems. However, as software systems evolve over time, their architectures inevitably change. To keep up with the change, architects need to track the implementation-level changes and update the architectural documentation accordingly, which is time-consuming and error-prone. Therefore, many automatic architecture recovery techniques have been proposed to ease this process. Despite efforts have been made to improve the accuracy of architecture recovery, existing solutions still suffer from two limitations. First, most of them only use one or two type of information for the recovery, ignoring the potential usefulness of other sources. Second, they tend to use the information in a coarse-grained manner, overlooking important details within it. To address these limitations, we propose SARIF, a fully automated architecture recovery technique, which incorporates three types of comprehensive information, including dependencies, code text and folder structure. SARIF can recover architecture more accurately by thoroughly analyzing the details of each type of information and adaptively fusing them based on their relevance and quality. To evaluate SARIF, we collected six projects with published ground-truth architectures and three open-source projects labeled by our industrial collaborators. We compared SARIF with nine state-of-the-art techniques using three commonly-used architecture similarity metrics and two new metrics. The experimental results show that SARIF is 36.1% more accurate than the best of the previous techniques on average. By providing comprehensive architecture, SARIF can help users understand systems effectively and reduce the manual effort of obtaining ground-truth architectures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.