Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Nov 2023]
Title:Lost Your Style? Navigating with Semantic-Level Approach for Text-to-Outfit Retrieval
View PDFAbstract:Fashion stylists have historically bridged the gap between consumers' desires and perfect outfits, which involve intricate combinations of colors, patterns, and materials. Although recent advancements in fashion recommendation systems have made strides in outfit compatibility prediction and complementary item retrieval, these systems rely heavily on pre-selected customer choices. Therefore, we introduce a groundbreaking approach to fashion recommendations: text-to-outfit retrieval task that generates a complete outfit set based solely on textual descriptions given by users. Our model is devised at three semantic levels-item, style, and outfit-where each level progressively aggregates data to form a coherent outfit recommendation based on textual input. Here, we leverage strategies similar to those in the contrastive language-image pretraining model to address the intricate-style matrix within the outfit sets. Using the Maryland Polyvore and Polyvore Outfit datasets, our approach significantly outperformed state-of-the-art models in text-video retrieval tasks, solidifying its effectiveness in the fashion recommendation domain. This research not only pioneers a new facet of fashion recommendation systems, but also introduces a method that captures the essence of individual style preferences through textual descriptions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.