Computer Science > Machine Learning
[Submitted on 2 Nov 2023 (v1), last revised 3 Jul 2024 (this version, v2)]
Title:Monotone Generative Modeling via a Gromov-Monge Embedding
View PDF HTML (experimental)Abstract:Generative adversarial networks (GANs) are popular for generative tasks; however, they often require careful architecture selection, extensive empirical tuning, and are prone to mode collapse. To overcome these challenges, we propose a novel model that identifies the low-dimensional structure of the underlying data distribution, maps it into a low-dimensional latent space while preserving the underlying geometry, and then optimally transports a reference measure to the embedded distribution. We prove three key properties of our method: 1) The encoder preserves the geometry of the underlying data; 2) The generator is $c$-cyclically monotone, where $c$ is an intrinsic embedding cost employed by the encoder; and 3) The discriminator's modulus of continuity improves with the geometric preservation of the data. Numerical experiments demonstrate the effectiveness of our approach in generating high-quality images and exhibiting robustness to both mode collapse and training instability.
Submission history
From: Wonjun Lee [view email][v1] Thu, 2 Nov 2023 16:33:35 UTC (36,316 KB)
[v2] Wed, 3 Jul 2024 20:35:27 UTC (4,256 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.