Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 2 Nov 2023]
Title:Exploring Deep Learning Techniques for Glaucoma Detection: A Comprehensive Review
View PDFAbstract:Glaucoma is one of the primary causes of vision loss around the world, necessitating accurate and efficient detection methods. Traditional manual detection approaches have limitations in terms of cost, time, and subjectivity. Recent developments in deep learning approaches demonstrate potential in automating glaucoma detection by detecting relevant features from retinal fundus images. This article provides a comprehensive overview of cutting-edge deep learning methods used for the segmentation, classification, and detection of glaucoma. By analyzing recent studies, the effectiveness and limitations of these techniques are evaluated, key findings are highlighted, and potential areas for further research are identified. The use of deep learning algorithms may significantly improve the efficacy, usefulness, and accuracy of glaucoma detection. The findings from this research contribute to the ongoing advancements in automated glaucoma detection and have implications for improving patient outcomes and reducing the global burden of glaucoma.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.