Computer Science > Sound
[Submitted on 30 Oct 2023]
Title:DCHT: Deep Complex Hybrid Transformer for Speech Enhancement
View PDFAbstract:Most of the current deep learning-based approaches for speech enhancement only operate in the spectrogram or waveform domain. Although a cross-domain transformer combining waveform- and spectrogram-domain inputs has been proposed, its performance can be further improved. In this paper, we present a novel deep complex hybrid transformer that integrates both spectrogram and waveform domains approaches to improve the performance of speech enhancement. The proposed model consists of two parts: a complex Swin-Unet in the spectrogram domain and a dual-path transformer network (DPTnet) in the waveform domain. We first construct a complex Swin-Unet network in the spectrogram domain and perform speech enhancement in the complex audio spectrum. We then introduce improved DPT by adding memory-compressed attention. Our model is capable of learning multi-domain features to reduce existing noise on different domains in a complementary way. The experimental results on the BirdSoundsDenoising dataset and the VCTK+DEMAND dataset indicate that our method can achieve better performance compared to state-of-the-art methods.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.