Computer Science > Programming Languages
[Submitted on 27 Oct 2023 (v1), last revised 15 Feb 2024 (this version, v2)]
Title:Functional Ownership through Fractional Uniqueness
View PDFAbstract: Ownership and borrowing systems, designed to enforce safe memory management without the need for garbage collection, have been brought to the fore by the Rust programming language. Rust also aims to bring some guarantees offered by functional programming into the realm of performant systems code, but the type system is largely separate from the ownership model, with type and borrow checking happening in separate compilation phases. Recent models such as RustBelt and Oxide aim to formalise Rust in depth, but there is less focus on integrating the basic ideas into more traditional type systems. An approach designed to expose an essential core for ownership and borrowing would open the door for functional languages to borrow concepts found in Rust and other ownership frameworks, so that more programmers can enjoy their benefits.
One strategy for managing memory in a functional setting is through uniqueness types, but these offer a coarse-grained view: either a value has exactly one reference, and can be mutated safely, or it cannot, since other references may exist. Recent work demonstrates that linear and uniqueness types can be combined in a single system to offer restrictions on program behaviour and guarantees about memory usage. We develop this connection further, showing that just as graded type systems like those of Granule and Idris generalise linearity, Rust's ownership model arises as a graded generalisation of uniqueness. We combine fractional permissions with grading to give the first account of ownership and borrowing that smoothly integrates into a standard type system alongside linearity and graded types, and extend Granule accordingly with these ideas.
Submission history
From: Danielle Marshall [view email][v1] Fri, 27 Oct 2023 14:22:00 UTC (70 KB)
[v2] Thu, 15 Feb 2024 11:10:11 UTC (77 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.