Mathematics > Numerical Analysis
[Submitted on 26 Oct 2023 (v1), last revised 3 Apr 2024 (this version, v2)]
Title:Acceleration and restart for the randomized Bregman-Kaczmarz method
View PDF HTML (experimental)Abstract:Optimizing strongly convex functions subject to linear constraints is a fundamental problem with numerous applications. In this work, we propose a block (accelerated) randomized Bregman-Kaczmarz method that only uses a block of constraints in each iteration to tackle this problem. We consider a dual formulation of this problem in order to deal in an efficient way with the linear constraints. Using convex tools, we show that the corresponding dual function satisfies the Polyak-Lojasiewicz (PL) property, provided that the primal objective function is strongly convex and verifies additionally some other mild assumptions. However, adapting the existing theory on coordinate descent methods to our dual formulation can only give us sublinear convergence results in the dual space. In order to obtain convergence results in some criterion corresponding to the primal (original) problem, we transfer our algorithm to the primal space, which combined with the PL property allows us to get linear convergence rates. More specifically, we provide a theoretical analysis of the convergence of our proposed method under different assumptions on the objective and demonstrate in the numerical experiments its superior efficiency and speed up compared to existing methods for the same problem.
Submission history
From: Lionel Tondji [view email][v1] Thu, 26 Oct 2023 12:09:25 UTC (712 KB)
[v2] Wed, 3 Apr 2024 13:46:18 UTC (470 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.