Electrical Engineering and Systems Science > Systems and Control
[Submitted on 25 Oct 2023 (v1), last revised 6 Nov 2023 (this version, v2)]
Title:Scalable Optimal Power Management for Large-Scale Battery Energy Storage Systems
View PDFAbstract:Large-scale battery energy storage systems (BESS) are helping transition the world towards sustainability with their broad use, among others, in electrified transportation, power grid, and renewables. However, optimal power management for them is often computationally formidable. To overcome this challenge, we develop a scalable approach in the paper. The proposed approach partitions the constituting cells of a large-scale BESS into clusters based on their state-of-charge (SoC), temperature, and internal resistance. Each cluster is characterized by a representative model that approximately captures its collective SoC and temperature dynamics, as well as its overall power losses in charging/discharging. Based on the clusters, we then formulate a problem of receding-horizon optimal power control to minimize the power losses while promoting SoC and temperature balancing. The cluster-based power optimization will decide the power quota for each cluster, and then every cluster will split the quota among the constituent cells. Since the number of clusters is much fewer than the number of cells, the proposed approach significantly reduces the computational costs, allowing optimal power management to scale up to large-scale BESS. Extensive simulations are performed to evaluate the proposed approach. The obtained results highlight a significant computational overhead reduction by more than 60% for a small-scale and 98% for a large-scale BESS compared to the conventional cell-level optimization. Experimental validation based on a 20-cell prototype further demonstrates its effectiveness and utility.
Submission history
From: Amir Farakhor [view email][v1] Wed, 25 Oct 2023 03:29:53 UTC (21,851 KB)
[v2] Mon, 6 Nov 2023 17:33:45 UTC (29,384 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.