Computer Science > Neural and Evolutionary Computing
[Submitted on 19 Oct 2023]
Title:Performance Evaluation of Evolutionary Algorithms for Analog Integrated Circuit Design Optimisation
View PDFAbstract:An automated sizing approach for analog circuits using evolutionary algorithms is presented in this paper. A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function that has resulted in faster convergence to the optimal solution. The algorithms are tuned and modified to converge to a better optimal solution with less standard deviation for multiple runs compared to standard versions. Modified versions of the artificial bee colony optimisation algorithm, genetic algorithm, grey wolf optimisation algorithm, and particle swarm optimisation algorithm are tested and compared for the optimal sizing of two operational amplifier topologies. An extensive performance evaluation of all the modified algorithms showed that the modifications have resulted in consistent performance with improved convergence for all the algorithms. The implementation of parallel computation in the algorithms has reduced run time. Among the considered algorithms, the modified artificial bee colony optimisation algorithm gave the most optimal solution with consistent results across multiple runs.
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.