Mathematics > Dynamical Systems
[Submitted on 18 Oct 2023]
Title:Downscaling Using CDAnet Under Observational and Model Noises: The Rayleigh-Benard Convection Paradigm
View PDFAbstract:Efficient downscaling of large ensembles of coarse-scale information is crucial in several applications, such as oceanic and atmospheric modeling. The determining form map is a theoretical lifting function from the low-resolution solution trajectories of a dissipative dynamical system to their corresponding fine-scale counterparts. Recently, a physics-informed deep neural network ("CDAnet") was introduced, providing a surrogate of the determining form map for efficient downscaling. CDAnet was demonstrated to efficiently downscale noise-free coarse-scale data in a deterministic setting. Herein, the performance of well-trained CDAnet models is analyzed in a stochastic setting involving (i) observational noise, (ii) model noise, and (iii) a combination of observational and model noises. The analysis is performed employing the Rayleigh-Benard convection paradigm, under three training conditions, namely, training with perfect, noisy, or downscaled data. Furthermore, the effects of noises, Rayleigh number, and spatial and temporal resolutions of the input coarse-scale information on the downscaled fields are examined. The results suggest that the expected l2-error of CDAnet behaves quadratically in terms of the standard deviations of the observational and model noises. The results also suggest that CDAnet responds to uncertainties similar to the theorized and numerically-validated CDA behavior with an additional error overhead due to CDAnet being a surrogate model of the determining form map.
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.