Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 16 Oct 2023]
Title:Convolutional Neural Network Model for Diabetic Retinopathy Feature Extraction and Classification
View PDFAbstract:The application of Artificial Intelligence in the medical market brings up increasing concerns but aids in more timely diagnosis of silent progressing diseases like Diabetic Retinopathy. In order to diagnose Diabetic Retinopathy (DR), ophthalmologists use color fundus images, or pictures of the back of the retina, to identify small distinct features through a difficult and time-consuming process. Our work creates a novel CNN model and identifies the severity of DR through fundus image input. We classified 4 known DR features, including micro-aneurysms, cotton wools, exudates, and hemorrhages, through convolutional layers and were able to provide an accurate diagnostic without additional user input. The proposed model is more interpretable and robust to overfitting. We present initial results with a sensitivity of 97% and an accuracy of 71%. Our contribution is an interpretable model with similar accuracy to more complex models. With that, our model advances the field of DR detection and proves to be a key step towards AI-focused medical diagnosis.
Submission history
From: Sharan Subramanian [view email][v1] Mon, 16 Oct 2023 20:09:49 UTC (880 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.