Computer Science > Artificial Intelligence
[Submitted on 15 Oct 2023 (v1), last revised 26 Nov 2023 (this version, v2)]
Title:Estimating Uncertainty in Multimodal Foundation Models using Public Internet Data
View PDFAbstract:Foundation models are trained on vast amounts of data at scale using self-supervised learning, enabling adaptation to a wide range of downstream tasks. At test time, these models exhibit zero-shot capabilities through which they can classify previously unseen (user-specified) categories. In this paper, we address the problem of quantifying uncertainty in these zero-shot predictions. We propose a heuristic approach for uncertainty estimation in zero-shot settings using conformal prediction with web data. Given a set of classes at test time, we conduct zero-shot classification with CLIP-style models using a prompt template, e.g., "an image of a <category>", and use the same template as a search query to source calibration data from the open web. Given a web-based calibration set, we apply conformal prediction with a novel conformity score that accounts for potential errors in retrieved web data. We evaluate the utility of our proposed method in Biomedical foundation models; our preliminary results show that web-based conformal prediction sets achieve the target coverage with satisfactory efficiency on a variety of biomedical datasets.
Submission history
From: Shiladitya Dutta [view email][v1] Sun, 15 Oct 2023 19:24:52 UTC (4,553 KB)
[v2] Sun, 26 Nov 2023 05:54:48 UTC (4,558 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.