Computer Science > Computation and Language
[Submitted on 12 Oct 2023 (v1), last revised 3 Nov 2023 (this version, v3)]
Title:Improving Factual Consistency for Knowledge-Grounded Dialogue Systems via Knowledge Enhancement and Alignment
View PDFAbstract:Pretrained language models (PLMs) based knowledge-grounded dialogue systems are prone to generate responses that are factually inconsistent with the provided knowledge source. In such inconsistent responses, the dialogue models fail to accurately express the external knowledge they rely upon. Inspired by previous work which identified that feed-forward networks (FFNs) within Transformers are responsible for factual knowledge expressions, we investigate two methods to efficiently improve the factual expression capability {of FFNs} by knowledge enhancement and alignment respectively. We first propose \textsc{K-Dial}, which {explicitly} introduces {extended FFNs in Transformers to enhance factual knowledge expressions} given the specific patterns of knowledge-grounded dialogue inputs. Additionally, we apply the reinforcement learning for factual consistency (RLFC) method to implicitly adjust FFNs' expressions in responses by aligning with gold knowledge for the factual consistency preference. To comprehensively assess the factual consistency and dialogue quality of responses, we employ extensive automatic measures and human evaluations including sophisticated fine-grained NLI-based metrics. Experimental results on WoW and CMU\_DoG datasets demonstrate that our methods efficiently enhance the ability of the FFN module to convey factual knowledge, validating the efficacy of improving factual consistency for knowledge-grounded dialogue systems.
Submission history
From: Boyang Xue [view email][v1] Thu, 12 Oct 2023 14:44:05 UTC (8,855 KB)
[v2] Mon, 16 Oct 2023 01:47:05 UTC (8,848 KB)
[v3] Fri, 3 Nov 2023 07:26:42 UTC (8,796 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.