Computer Science > Information Retrieval
[Submitted on 11 Oct 2023 (v1), last revised 12 Jun 2024 (this version, v3)]
Title:Language Models As Semantic Indexers
View PDF HTML (experimental)Abstract:Semantic identifier (ID) is an important concept in information retrieval that aims to preserve the semantics of objects such as documents and items inside their IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs by first procuring embeddings using off-the-shelf text encoders and then deriving IDs based on the embeddings. However, each step introduces potential information loss, and there is usually an inherent mismatch between the distribution of embeddings within the latent space produced by text encoders and the anticipated distribution required for semantic indexing. It is non-trivial to design a method that can learn the document's semantic representations and its hierarchical structure simultaneously, given that semantic IDs are discrete and sequentially structured, and the semantic supervision is deficient. In this paper, we introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model. We tackle the challenge of sequential discrete ID by introducing a semantic indexer capable of generating neural sequential discrete representations with progressive training and contrastive learning. In response to the semantic supervision deficiency, we propose to train the model with a self-supervised document reconstruction objective. We show the high quality of the learned IDs and demonstrate their effectiveness on three tasks including recommendation, product search, and document retrieval on five datasets from various domains. Code is available at this https URL.
Submission history
From: Bowen Jin [view email][v1] Wed, 11 Oct 2023 18:56:15 UTC (2,687 KB)
[v2] Thu, 2 May 2024 14:44:27 UTC (2,296 KB)
[v3] Wed, 12 Jun 2024 20:36:22 UTC (2,297 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.