Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Oct 2023]
Title:Precise Payload Delivery via Unmanned Aerial Vehicles: An Approach Using Object Detection Algorithms
View PDFAbstract:Recent years have seen tremendous advancements in the area of autonomous payload delivery via unmanned aerial vehicles, or drones. However, most of these works involve delivering the payload at a predetermined location using its GPS coordinates. By relying on GPS coordinates for navigation, the precision of payload delivery is restricted to the accuracy of the GPS network and the availability and strength of the GPS connection, which may be severely restricted by the weather condition at the time and place of operation. In this work we describe the development of a micro-class UAV and propose a novel navigation method that improves the accuracy of conventional navigation methods by incorporating a deep-learning-based computer vision approach to identify and precisely align the UAV with a target marked at the payload delivery position. This proposed method achieves a 500% increase in average horizontal precision over conventional GPS-based approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.