Computer Science > Computation and Language
[Submitted on 9 Oct 2023 (v1), last revised 13 Jan 2024 (this version, v3)]
Title:Aligning Language Models with Human Preferences via a Bayesian Approach
View PDF HTML (experimental)Abstract:In the quest to advance human-centric natural language generation (NLG) systems, ensuring alignment between NLG models and human preferences is crucial. For this alignment, current popular methods leverage a reinforcement learning (RL) approach with a reward model trained on feedback from humans. However, inherent disagreements due to the subjective nature of human preferences pose a significant challenge for training the reward model, resulting in a deterioration of the NLG performance. To tackle this issue, previous approaches typically rely on majority voting or averaging to consolidate multiple inconsistent preferences into a merged one. Although straightforward to understand and execute, such methods suffer from an inability to capture the nuanced degrees of disaggregation among humans and may only represent a specialized subset of individuals, thereby lacking the ability to quantitatively disclose the universality of human preferences. To address this challenge, this paper proposes a novel approach, which employs a Bayesian framework to account for the distribution of disagreements among human preferences as training a preference model, and names it as d-PM. Besides, considering the RL strategy's inefficient and complex training process over the training efficiency, we further propose utilizing the contrastive learning strategy to train the NLG model with the preference scores derived from the d-PM model. Extensive experiments on two human-centric NLG tasks, i.e., emotional support conversation and integrity "Rule-of-Thumb" generation, show that our method consistently exceeds previous SOTA models in both automatic and human evaluations.
Submission history
From: Wang Jiashuo [view email][v1] Mon, 9 Oct 2023 15:15:05 UTC (3,435 KB)
[v2] Fri, 22 Dec 2023 13:04:48 UTC (3,435 KB)
[v3] Sat, 13 Jan 2024 11:37:57 UTC (3,435 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.